
A few special numbers R. Inkulu1

• The recurrence relation for Fibonacci numbers is,

fi =


0 if i = 0,

1 if i = 1,

fi−1 + fi−2 if i ≥ 2.

- The ordinary generating function of this sequence is G(x) = f0x
0 + f1x

1 + . . ..

Since fi + fi+1 = fi+2 for i ≥ 2,
G(x)− xG(x)− x2G(x) = x, i.e., G(x) = x

1−x−x2 = x
(1−αx)(1−βx) for α = 1+

√
5

2 and β = 1−
√
5

2 .

The 1+
√
5

2 is known as the golden ratio, denoted with ϕ. Naturally, 1−
√
5

2 is known as the conjugate of the
golden ratio, denoted with ϕ̂.

Specifically, x

(1−ϕx)(1−ϕ̂x)
= 1√

5
( 1
1−ϕx− 1

1−ϕ̂x
) = 1√

5
((1+(ϕx)+(ϕx)2+. . .)−(1+(ϕ̂x)+(ϕ̂x)2+. . .)).

Therefore, fn = [xn]G(x) = 1√
5
(ϕn − ϕ̂n) = 1√

5
((1+

√
5

2 )n − (1−
√
5

2 )n).

- Aliter:

Since fn = fn−1 + fn−2 is a linear homogenous recurrence relation with degree two, its solution must be
of form α1r

n
1 + α2r

n
2 when r1 ̸= r2.

Here, α1 and α2 are real numbers, r1 and r2 are the roots of the characteristic equation r2 − r − 1 = 0 of
the recurrence relation. Solving the characteristic equation yields r1 = ϕ and r2 = ϕ̂.

Since f0 = 0 and f1 = 1, α1 + α2 = 0 and α1ϕ+ α2ϕ̂ = 1. Solving these two equations, α1 = 1√
5

and

α2 = − 1√
5
.

Therefore, fn = 1√
5
ϕn − 1√

5
ϕ̂n.

- Observation: For any n, fn+1 is the number of ordered multisets consisting of 1s and 2s such that the sum
of elements of each such set is equal to n. For example, since 4 can be written as 1 + 1 + 1 + 1, 1 + 1 +
2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2, f5 is equal to five.

- Significant (in)equalities:∑n
i=0 fi = fn+2 − 1∑n−1
i=0 f2i+1 = f2n∑n
i=0 f

2
i = fnfn+1 → leading to Fibonacci spiral

1with the help of note taken by Sawinder Kaur (TA) in a lecture
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fn+1fn−1 − f2
n = (−1)n ← Cassini’s theorem

ϕn = ϕfn + fn−1

fn ≥ ϕn−2

• The recurrence relation for Catalan numbers is,

Cn =


0 if n = 0,

1 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

The ordinary generating function of this sequence is G(x) = C0x
0 + C1x

1 + C2x
2 + . . ..

Then, G(x)− x
= C2x

2 + C3x
3 + . . .

=
∑

n≥2Cnx
n

=
∑

n≥2
∑n−1

i=1 CiCn−ix
n

=
∑

n≥2
∑n−1

i=1 Cix
iCn−ix

n−i

= (
∑

i≥1Cix
i)(

∑
j≥1Cjx

j)

= (G(x))2.

Therefore, G(x)2 −G(x) + x = 0, i.e., G(x) = 1±
√
1−4x
2 .

If G(x) = 1+
√
1−4x
2 , G(0) = 1; however, C0 = 0. Hence, G(x) = 1

2 − 1
2(1− 4x)1/2.

Using extended binomial theorem, G(x) = 1
2 − 1

2(
∑

k≥0
(1/2

k

)
(−4x)k).

Therefore, [xn]G(x) = −1
2

(
1/2
n

)
(−4)n.

But,
(
1/2
n

)
= (1/2)(1/2−1)(1/2−2)...(1/2−(n−1))

n!

=
(1/2)(−1/2)(−3/2)...(−( 2n−3

2
))

n!

= 1
2n

(−1)n(1)(3)...(2n−3)
n!

= 1
2n (−1)n−1 1

n!
(2n−2)!

(2)(4)...(2n−2)

= 1
2n (−1)n−1 1

n!
(2n−2)!

2n−1(n−1)!

= 2
4n (−1)n−1 (2n−2)!

n!(n−1)!
= 2

4nn(−1)n−1
(
2n−2
n−1

)
.

Hence, [xn]G(x) = −1
2

2
4nn(−1)n−1

(
2n−2
n−1

)
(−1)n4n = (−1)2n

n

(
2n−2
n−1

)
= 1

n

(
2n−2
n−1

)
.
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If the recurrence is defined as,

Cn =


1 if n = 0,

2 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

substituting n+ 1 for n in the above, Cn = [xn]G(x) = 1
n+1

(
2n
n

)
.

Due to Stirling,
√
2πn(ne )

ne(
1

12n
− 1

360n3 ) < n! <
√
2πn(ne )

ne
1

12n ; from these inequalities, Cn is Ω( 4n

n3/2 ):
1

n+1

√
4πn( 2n

e
)2n

2πn(n
e
)2n

= 1
n+1

4n√
πn

= 4n

n3/2 (
1√
π
(1− 1

1+n)).

• A function f(n) is monotonically increasing (resp. monotonically decreasing) if m ≤ n implies f(m) ≤
f(n) (resp. f(m) ≥ f(n)). A function f(n) is strictly increasing (resp. strictly decreasing) if m < n
implies f(m) < f(n) (resp. f(m) > f(n)).

Let f(x) be a positive monotonically increasing continuous function. By approximating the area under
f(x) by two step functions, the following inequalities are derived.

*
∫ n
m−1 f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n+1
m f(x)dx.

(The left (resp. right) ineq is due to the left (resp. right) subfigure of Fig. 1.)

* f(m) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(n) +
∫ n
m f(x)dx.

(The left (resp. right) ineq is due to the left (resp. right) subfigure of Fig. 1.)

The second one is preferred as it does not rely on the integral values outside [m,n].

m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1)
f(n)

x

f(x)

m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1) f(n)
f(x)

x
n+ 1

Figure 1: Approximating a summation with an integral.

- An example: Noting that lg(k) is a monotonically increasing continuous function,
n ln (n)− n+ 1 ≤ ∑n

i=1 ln (i) ≤ n ln (n)− n+ 1 + ln (n). ——— (1)

Hence, nn

en−1 ≤ n! ≤ nn+1

en−1 . ———- (1b)
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• From (1), we know lg (n!)− n ln (n) + n ≤ 1 + ln (n).
We claim there exists a positive constant α such that (ln(n!)− n lnn+ n− 1

2 lnn) ≈ α.
Then, eα ≈ e(ln(n!)−(n+

1
2
) lnn+n) = n!en

nn+1/2 . ——- (2a)

That is, n! ≈ eαnn+ 1
2 e−n. —— (2b)

From Wallis’ inequality, when n is asymptotically large, (2)(4)(6)...(2n)

(1)(3)(5)...(2n−1)
√
2n

≈
√

π
2

⇒ (2nn!)2

(2n)!
1√
2n

≈
√

π
2 .

Substituting (2b), 22ne2αn2n+1e−2n

eα(2n)2n+1
2 e−2n

1√
2n

≈
√

π
2 ⇒ eα ≈

√
2π.

Substituting (2a), eα = n!en

nn+1/2 ≈
√
2π ⇒ n! ≈

√
2πn(ne )

n.

This is known as the Stirling’s approximation of n!. As n grows, Stirling’s approximation betters in
approximating n! to (1b).

• The recurrence relation for Harmonic numbers is,

Hn =

{
1 if n = 1,

an−1 +
1
n if n ≥ 2.

If f(k) is a positive monotonically decreasing continuous function, then

–
∫ n+1
m f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n
m−1 f(x)dx

– f(n) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(m) +
∫ n
m f(x)dx —— (3)

Noting that 1/k is a monotonically decreasing function, from (3), 1
n + ln (n) ≤ ∑n

k=1
1
k ≤ 1 + ln (n).

—— (4)

* Aliter: Split [1, n] into ⌊lg n⌋+ 1 pieces and upper-bound the contribution of each piece by 1:

Hn =
n∑

k=1

1

k
≤
⌊lgn⌋∑
i=0

2i−1∑
j=0

1

2i + j

≤
⌊lgn⌋∑
i=0

2i−1∑
j=0

1

2i

=

⌊lgn⌋∑
i=0

1

2i
(2i − 1 + 1)

= lg n+ 1
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• The sum of first n Harmonic numbers is,
∑n

k=1Hk

=
∑n

k=1

∑k
j=1

1
j

= 1 + (1 + 1
2) + (1 + 1

2 + 1
3) + . . .+ (1 + 1

2 + . . .+ 1
n)

= n+ 1
2(n− 1) + 1

3(n− 2) + . . .+ 1
n(n− (n− 1))

=
∑n

j=1
1
j (n− j + 1)

=
∑n

j=1(
n+1
j − j

j )

= (n+ 1)(
∑n

j=1
1
j )− (

∑n
j=1 1)

= (n+ 1)Hn − n.

• We had seen two proofs, one by Euclid and the other by Christian Goldbach, to show there are infinitely
many primes. Here is another proof of the same by Leonhard Euler. Let n be a positive integer. Also, let
π(n) be the number of primes less than or equal to n. Below, p denotes a prime number.

lnn ≤(from the left ineq in (4))
∑n

k=1
1
k ≤(a), see below Πp≤n(

∑
k≥0

1
pk
) = Πp≤n(

1
1− 1

p

) = Π
π(n)
k=1

pk
pk−1 ≤

Π
π(n)
k=1 (1 +

1
pk−1) ≤

(since pk≥k+1) Π
π(n)
k=1 (1 +

1
k ) = Π

π(n)
k=1 (

k+1
k ) = π(n) + 1.

For every integer i, if i has a prime decomposition comprising a subset of primes that are less than or
equal to n, then 1

i contributes to the RHS of inequality (a).

Since lnn strictly monotonically increases with n, π(n) must also increase with n.

• The number of ways to distribute n labeled balls into r unlabeled (indistinguishable) bins with no bin
left empty is 1

r! · (number of onto functions from a set with n elements to a set with r elements) =
1
r!

∑r−1
i=0 (−1)iC(r, i)(r − i)n. This is called the rth Stirling number of the second kind of n, denoted

by
{
n
r

}
. For asymptotically large values of n,

{
n
r

}
is approximately rn

r! .2

The recurrence relation for distributing n + 1 labeled balls into r unlabeled bins with no bin left empty
is,

{
n+1
r

}
= r

{
n
r

}
+

{
n

r−1
}

for 0 < r < n, with initial conditions
{
0
0

}
= 1,

{
k
0

}
=

{
0
k

}
= 0 for k > 0:

In partitioning the n + 1 labeled balls into r bins such that no bin left empty, the (n + 1)-th ball could
either be in a bin with no other ball (case (i)) or it shares the bin with other balls (case (ii)). In case (i),
the remaining n balls needs to be partitioned into r − 1 bins, hence the second term of the recurrence. In
case (ii), all balls other than the (n+1)-th ball are partitioned into r bins, and then there are r choices for
inserting the (n+ 1)-th ball, hence the first term.

From the definition of
{
n
j

}
, the number of ways to distribute n labeled balls into at most r unlabeled

bins is
∑r

j=1

{
n
j

}
. When r is n, this is denoted by Bn. For a set S = {a, b, c} of (labeled) balls,

B3 = 5: {{a}, {b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{c}, {a, b}}, {{a, b, c}}. The Bn is known to be

2not proved in class
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O( nn

ln (n+1)).
3

Considering the combinatorial meaning of
{
n
r

}
, Bn =

∑n
r=0

{
n
r

}
.

Further, Bn+1 =
∑n

r=0C(n, r)Br: fix on an arbitrary labeled ball b in n + 1 balls; choose r balls from
n balls in C(n, r) ways, partition those r balls in Br ways, and include the partition that contains the
remaining n− r balls and the ball b.

• A partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive
integers. For example, for n = 4, there are five distinct integer partitions: 4, 3+1, 2+2, 2+1+1, 1+1+
1 + 1. The number of integer partitions of n is denoted by p(n). For every positive integer i, let ai be the
number of times i occurs in an integer partition of n. Then the number of non-negative integral solutions
of (1)a1 + (2)a2 + . . . + k(ak) + . . . = n is the number of partitions of n, which is essentially p(n).
Therefore, p(n) = [xn]((1+x+x2+ . . .)(1+x2+x4+ . . .)(1+x3+x6+ . . .) . . .) = [xn](Π∞i=1

1
1−xk ).

No closed formula is known for p(n). However, it is known that as n → ∞, p(n) is approximately equal

to 1
4n
√
3
e
(π

√
2n
3
).

The number of ways of partitioning n in exactly r positive integers is denoted by pr(n). The pr(n) is also
the number of ways to distribute n unlabeled balls into r unlabeled bins with no bin left empty. Finding
pr(n) is equivalent to finding the number of monotonically increasing positive integers a1, a2, . . . , ar such
that a1 + a2 + . . .+ ar = n, which is equal to [xn] xr

(1−x)(1−x2)(1−x3)...(1−xr)
.

The recurrence relation is, pr(n) = pr−1(n − 1) + pr(n − r) with pk(n) = 0 for k > n, p1(n) =
pn(n) = 1, p2(n) = ⌊n2 ⌋, and p0(n) = 0: when there is a partition of size one, partition the remaining
n − 1 unlabelled balls in r − 1 parts; when there is no partition of size one, keep aside r balls, partition
the remaining n− r balls in r parts, and add one ball in each part so that each part will be of size at least
two.

A partition of a positive integer n into at most r positive integers is a way of writing n as a sum of at most r
positive integers. When n = 4 and r = 3, there are four distinct integer partitions: 4, 3+1, 2+2, 2+1+1.
Analogously, there are nine ways of distributing 6 identical books into 4 identical boxes: 6, 5 + 1, 4 + 2,
4 + 1 + 1, 3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1. This is equal to

∑r
i=1 pi(n).
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