
A few special numbers R. Inkulu1

• The recurrence relation for Fibonacci numbers is,

fi =


0 if i = 0,

1 if i = 1,

fi−1 + fi−2 if i ≥ 2.

The ordinary generating function of this sequence is G(x) = f0x
0 + f1x

1 + . . ..

Since fi + fi+1 = fi+2 for i ≥ 2,
G(x)− xG(x)− x2G(x) = x, i.e., G(x) = x

1−x−x2 = x
(1−αx)(1−βx) for α = 1+

√
5

2 and β = 1−
√
5

2 .

The 1+
√
5

2 is known as the golden ratio, denoted with ϕ. Naturally, 1−
√
5

2 is known as the conjugate of the
golden ratio, denoted with ϕ̂.

Specifically, x

(1−ϕx)(1−ϕ̂x)
= 1√

5
( 1
1−ϕx− 1

1−ϕ̂x
) = 1√

5
((1+(ϕx)+(ϕx)2+. . .)−(1+(ϕ̂x)+(ϕ̂x)2+. . .)).

Therefore, fn = [xn]G(x) = 1√
5
(ϕn − ϕ̂n) = 1√

5
((1+

√
5

2 )n − (1−
√
5

2 )n).

• The recurrence relation for Catalan numbers is,

Cn =


0 if n = 0,

1 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

The ordinary generating function of this sequence is G(x) = C0x
0 + C1x

1 + C2x
2 + . . ..

Then, G(x)− x
= C2x

2 + C3x
3 + . . .

=
∑

n≥2Cnx
n

=
∑

n≥2

∑n−1
i=1 CiCn−ix

n

=
∑

n≥2

∑n−1
i=1 Cix

iCn−ix
n−i

= (
∑

i≥1Cix
i)(

∑
j≥1Cjx

j)

= (G(x))2.

Therefore, G(x)2 −G(x) + x = 0, i.e., G(x) = 1±
√
1−4x
2 .

1with the help of note taken by Sawinder Kaur (TA) in a lecture
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If G(x) = 1+
√
1−4x
2 , G(0) = 1; however, C0 = 0. Hence, G(x) = 1

2 − 1
2(1− 4x)1/2.

Using extended binomial theorem, G(x) = 1
2 − 1

2(
∑

k≥0

(1/2
k

)
(−4x)k).

Therefore, [xn]G(x) = −1
2

(
1/2
n

)
(−4)n.

But,
(
1/2
n

)
= (1/2)(1/2−1)(1/2−2)...(1/2−(n−1))

n!

=
(1/2)(−1/2)(−3/2)...(−( 2n−3

2
))

n!

= 1
2n

(−1)n(1)(3)...(2n−3)
n!

= 1
2n (−1)n−1 1

n!
(2n−2)!

(2)(4)...(2n−2)

= 1
2n (−1)n−1 1

n!
(2n−2)!

2n−1(n−1)!

= 2
4n (−1)n−1 (2n−2)!

n!(n−1)!

= 2
4nn(−1)n−1

(
2n−2
n−1

)
.

Hence, [xn]G(x) = −1
2

2
4nn(−1)n−1

(
2n−2
n−1

)
(−1)n4n = (−1)2n

n

(
2n−2
n−1

)
= 1

n

(
2n−2
n−1

)
.

If the recurrence is defined as,

Cn =


1 if n = 0,

2 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

substituting n+ 1 for n in the above, Cn = [xn]G(x) = 1
n+1

(
2n
n

)
.

We know Stirling’s approximation of n! is,
√
2πn(ne )

ne
1

12n+1 < n! <
√
2πn(ne )

ne
1

12n . Or, as n tends to
infinity, the ratio of n! and

√
2πn(ne )

n tends to 1. Using these bounds, Cn is Ω( 4n

n3/2 ).

• If f(k) is a positive monotonically increasing continuous function (refer to Fig. 1), then

–
∫ n
m−1 f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n+1
m f(x)dx

– f(m) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(n) +
∫ n
m f(x)dx



m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1)
f(n)

x

f(x)

m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1) f(n)
f(x)

x
n+ 1

Figure 1: Approximating a summation with an integral.

Noting that lg(k) is a monotonically increasing function,
n ln (n)− n+ 1 ≤ ∑n

i=1 ln (i) ≤ n ln (n)− n+ 1 + ln (n). ——— (1)

Hence, nn

en−1 ≤ n! ≤ nn+1

en−1 .

• From (1), we know lg (n!)− n ln (n) + n ≤ 1 + ln (n).
We claim there exists a positive constant α such that (ln(n!)− n lnn+ n− 1

2 lnn) ≈ α.
Then, eα ≈ e(ln(n!)−(n+ 1

2
) lnn+n) = n!en

nn+1/2 . ——- (2a)

That is, n! ≈ eαnn+ 1
2 e−n. —— (2b)

From Wallis’ inequality, when n is asymptotically large, (2)(4)(6)...(2n)

(1)(3)(5)...(2n−1)
√
2n

≈
√

π
2

⇒ (2nn!)2

(2n)!
1√
2n

≈
√

π
2 .

Substituting (2b), 22ne2αn2n+1e−2n

eα(2n)2n+1
2 e−2n

1√
2n

≈
√

π
2 ⇒ eα ≈

√
2π.

Substituting (2a), eα = n!en

nn+1/2 ≈
√
2π ⇒ n! ≈

√
2πn(ne )

n.

This is known as the Stirling’s approximation of n!.

• The recurrence relation for Harmonic numbers is,

Hn =

{
1 if n = 1,

an−1 +
1
n if n ≥ 2.

If f(k) is a positive monotonically decreasing continuous function, then
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–
∫ n+1
m f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n
m−1 f(x)dx

– f(n) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(m) +
∫ n
m f(x)dx —— (3)

Noting that 1/k is a monotonically decreasing function, from (3), 1
n + ln (n) ≤ ∑n

k=1
1
k ≤ 1 + ln (n).

• The sum of first n Harmonic numbers is,
∑n

k=1Hk

=
∑n

k=1

∑k
j=1

1
j

= 1 + (1 + 1
2) + (1 + 1

2 + 1
3) + . . .+ (1 + 1

2 + . . .+ 1
n)

= n+ 1
2(n− 1) + 1

3(n− 2) + . . .+ 1
n(n− (n− 1))

= (
∑n

j=1
n−j+1

j ) = (
∑n

j=1

∑n
k=j

1
j )

= n(1 + 1
2 + . . .+ 1

n)− (12 + 2
3 + 3

4 + . . .+ n−1
n )

= n(1 + 1
2 + . . .+ 1

n)− (12 + 2
3 + 3

4 + . . .+ n−1
n )−Hn +Hn

= (n+ 1)Hn − n.

• The rth Stirling number of second kind of n is the number of ways to distribute n labeled balls into r
unlabeled bins with no bin left empty, denoted by

{
n
r

}
. The recurrence relation is,

{
n+1
r

}
= r

{
n
r

}
+
{

n
r−1

}
for r > 0, with initial conditions

{
0
0

}
= 1,

{
k
0

}
=

{
0
k

}
= 0 for k > 0. Further,

{
n
r

}
= 1

r! · (number of onto
functions from a set with n elements to a set with r elements) = 1

r!

∑r−1
i=0 (−1)iC(r, i)(r − i)n.


