A few special numbers R. Inkulul

¢ The recurrence relation for Fibonacci numbers is,

0 ifi=0,
fi=d1ifi=1,
fic1+ fico ifi > 2.

The ordinary generating function of this sequence is G(z) = fox? + fiz!t +....

Since f; + fit+1 = fiyo fori > 2,
G(z) — 2G(z) — 2°G(x) = z,ie., G(z) =

=

for o = 15 and B = 1=

x _ x
1—z—x2 = (1—azx)(1-Bz) 2 2

The # is known as the golden ratio, denoted with ¢. Naturally, 1_2‘/5 is known as the conjugate of the

golden ratio, denoted with $

Specifically, m = %(1_1@— _1A )= %((1+(¢x)+(¢x)2+. )= (14 (px)+(dx)%+.. ).

Therefore, f, = [2"]G(2) = Jz(¢" — 6") = Je((F52)" = (}52)").

* The recurrence relation for Catalan numbers is,

0 ifn =0,
Ch=11ifn=1,
S CiChy ifn > 2.

The ordinary generating function of this sequence is G(z) = Coa? + Cra! + Coz? + .. ..

Then, G(z) —
= Cha® + Cya® 4 ...

= Zn22 C,a"

=D n>2 S GG

= n>2 2?2—11 Ciz'Cp_sx™ ™"
= (Xix1 Cia") (51 Cj))
= (G(x))*.

Therefore, G(7)? — G(z) + x = 0, i.e., G(x) = @-

with the help of note taken by Sawinder Kaur (TA) in a lecture
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If G(x) = 1J”2174z, G(0) = 1; however, Cy = 0. Hence, G(z) = § — (1 — 4x)'/2,

Using extended binomial theorem, G(z) = § — (X0 (122)(—496)’“)_

Therefore, [z"]|G(z) = _71(1/2)(—4)".

n

But, (17/12
_ (1/2)(1/2—1)(1/2—'2)~--(1/2—(n—1))

n:

_ (1/2)(=1/2)(=3/2)...(-(**72))

(=1)
Q—l)n71j> (2n—2)!
(=1)

Hence, [27]G(x) = St 42, (—1)" L () (~1yman = CD2 () = L),

n n—1 n—1
If the recurrence is defined as,

1 ifn=0,

Cph=12ifn=1,
S GG ifn > 2.
substituting n + 1 for n in the above, C,, = [2"|G(z) = n%rl (2:)
We know Stirling’s approximation of n! is, \/ﬁ(%)”eﬁ <nl < \/%(

infinity, the ratio of n! and v/27n(%)" tends to 1. Using these bounds, Cj, is 4

n3/2

1
2)"et2n. Or, as n tends to
(772)-

* If f(k) is a positive monotonically increasing continuous function (refer to Fig. 1), then
= o @y < ST f(R) < [ f(@)de
= f(m) + [, f@)de < 575, f(k) < f(n) + [, f(@)dz



m—1m m+1 " h—2 p—1 n m—1m m+1 " n—2 p—1 n n+l

Figure 1: Approximating a summation with an integral.

Noting that lg(k) is a monotonically increasing function,
nln(n) —n+1<Y" In(i) <nln(n) —n+1+1In(n).

ey

nn+1

nnl <n' <

Hence,

From (1), we know Ig (n!) — nln(n) +n < 1+ In(n).

We claim there exists a positive constant « such that (In(n!) —nlnn +n — 11nn) =~ a.

Then, e ~ e(In(M)—(n+3)Inntn) _ n:ff:/z ——(2a)

That is, n! ~ e*n" T2~ — (2b)

From Wallis’ inequality, when n is asymptotically large, N (32)(5)4)(6)'“
(2”77,')2 1 ~ T

@l van V2

22n 2a 2n+1 —2n 1 . 7 a
Substituting (2b), —?n ~ \/g = ¢

(2n)2"F2e—2n

Substituting (2a), e* = nff'fl/z V2m = nl = V2 (%)™

This is known as the Stirling’s approximation of n!.

The recurrence relation for Harmonic numbers is,

1 ifn=1,
H, = L
an-1+ 5 ifn > 2.

If f(k) is a positive monotonically decreasing continuous function, then
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= S f@yde < SR, fR) < [ fa)de

= fn)+ [ flx)de < ST, f(k) < f(m)+ [ f(z)de — (3)

Noting that 1/k is a monotonically decreasing function, from (3), £ +In(n) < >} ; + < 1+In(n).

* The sum of first n Harmonic numbers is, Y, Hy,
ko1
=ZZ:12j:1;
=1+(1+H+0+3i+DH+. . +Q+3+...+ 1
:n—i-%(n—'l)—i-% )+t g (n—(n 1))

S
N—

& Dy
:n(l—i-%—i-..—i-%)—(% §+§+...+”T‘1)
=n(l+3+...+)-G+:+3+...+ Y —H,+H,
=(n+1)H,—n

e The " Stirling number of second kind of n is the number of ways to distribute n labeled balls into 7
unlabeled bins with no bin left empty, denoted by {"'}. The recurrence relation is, {"jl} =r{"}+{"}

for » > 0, with initial conditions {8} =1, {’8} = {2} = 0 for k£ > 0. Further, {Z} = % (number of onto
functions from a set with n elements to a set with r elements) = %, Z:;& (=1)C(r,i)(r — i)™



