
Skip List R. Inkulu

• Objective: Efficiently searching in a singly linked list while supporting dictionary operations.

• Let S0 be an ordered set comprising input keys k1, k2, . . . , kn, such that ki < ki+1 for 1 ≤ i ≤ n − 1.
The algorithm computes a hierarchy of ordered sets: S0 ⊇ S1 ⊇ . . . ⊇ Sr. For each ki, the level ℓi of ki
is the number of coin flips before obtaining a tail for the first time. In this note, we assume the algorithm
uses an unbiased coin. The key ki is included in every set in S0, S1, . . . , Sℓi . We also say the level of Sj

is ℓj , for every j.

The below figure shows these sets stacked one above the other, and the elements of each ordered set Sj is
stored in a singly linked list: nodes of each row corresponds to a set in the hierarchy, and the collection of
all the nodes in any column is called a pile. For every ki, the pile Pi of ki has ℓi +1 nodes, and each node
of that pile stores ki. We define r = 1 +max{ℓi : 1 ≤ i ≤ n}. The skip list also has two sentinel piles:
every node of one such pile P−∞ has key −∞ and every node of the other pile P∞ has key ∞, and the
number of nodes in either of these two piles is r+1. The −∞-pile precedes P1 and the ∞-pile succceeds
Pn, and these are placed as shown in the figure. Naturally, Sr = {−∞,∞}.

Any node x not belonging to −∞-pile, ∞-pile, and S0, has a horizontal pointer and a vertical downward
pointer. Suppose x belongs to set Sj and to pile Pi. Then, the horizontal pointer from x refers to node
having the smallest key in Sj that is larger than ki, whereas the vertical pointer refers to the node in
Sj−1 ∩ Pi.

k1 k2 k3 k4 k5 k6 k7 k8−∞ ∞

−∞

−∞

−∞

−∞

−∞

−∞

∞

∞

∞

∞

∞

∞

k1

k1

k2

k2

k2

k2

k2

k4

k4

k4

k4

k5

k5

k5

k6 k7

k7

k7

k7

k8

k8

∗

∗

∗

∗

∗

∗

∗
ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

P1 P2 P3 P4 P5 P6 P7 P8

n = 8, r = 6, and the level of k2 is 5

S2 = {k1, k2, k4, k5, k7, k8}
keys in ℓ2, in sorted order, are −∞, k1, k2, k4, k5, k7, k8,∞

search path for key 27 is shown in blue, assuming k6 = 20, k7 = 30

the ∗ marked nodes are the nodes pushed to stack in the algorithm to insert key 27 between k6 and k7

also, the ∗ marked nodes in levels 0 to 4 help in deleting key k7 = 30 (the entire pile P7)

• With high probability, the number of levels is O(lg n).

* The probability r is ≥ k is at most n · pr(ℓi ≥ k)1 = n(12)
k.

1from Boole’s inequality: pr(∪n
i=1Ei) ≤

∑n
i=1 pr(Ei)

1

http://fac.iitg.ac.in/rinkulu/

Hence, probability the number of levels r is ≥ c lg n is at most n
2c lgn = 1

nc−1 , that is, polynomially
small.

The number of levels is O(lg n) in expectation.

* E(r)

=
∑∞

i=1 ipr(r = i)

=
∑∞

i=1 i(pr(r ≥ i)− pr(r ≥ i+ 1))

=
∑∞

i=1 pr(r ≥ i)

=
∑c lgn

i=1 pr(r ≥ i) +
∑

i>c lgn pr(r ≥ i)

≤
∑c lgn

i=1 1 +
∑

i>c lgn
n
2i

= c lg n+ n
2c lgn+1 (1 +

1
2 + 1

22
+ . . .)

= c lg n+ 1
nc−1 .

The space needed to store n keys in a skip list is O(n) with high probability.

* Since a fair coin is used, if the number of nodes in ℓi is ni, the number of nodes in ℓi that survive
to reach level ℓi+1 is ni

2 . Since the number of levels is O(lg n) with high probability, the space
including the space for sentinel piles, with high probability, is

O(lg n) + (n+ n
2 + n

4 + . . .+ (O(lg n) terms))

≤ O(lg n) + (n+ n
2 + n

4 + . . .)

= O(n).

As shown above, probability level ℓr, for r = O(lg n), to have more than two nodes is polynomially
small. Hence, the space is O(n) with high probability.

The space needed to store n keys in a skip list is O(n) in expectation.

* The probability a key ki belongs to set Sj is 1
2j

. Hence, E[|Sj |] = n
2j

.

Therefore, E[
∑r

j=1(|Sj |)] =
∑r

j=1E[|Sj |] ≤
∑∞

j=0
n
2j

= 2n.

Since E[r] = O(lg n), including nodes in two sentinel piles and the nodes in |S0|, the space in
expectation is O(n).

• Algorithm to search for a key k in the skip list:

The search starts at node x with key −∞ in level ℓr. Consider any node v, not belonging to level ℓ0
and not belonging to either of the sentinel piles, on the search path. At v, algorithm checks whether the
horizontal pointer at v is to a node with key > k. If this is the case, then the search proceeds to node
located below v using the vertical pointer stored at v. Otherwise, the search algorithm proceeds to node
referred by horizontal pointer stored at v. The search terminates upon reaching to any node y in level ℓ0.
Then the algorithm checks whether the key stored at y is equal to k.

Observation 1: When the search path for key k ends at a node y of ℓ0, the key stored at y is equal to k iff
k is in the skip list.

2

Observation 2: Any search path P enters any pile at the top node of that pile.

The algorithm to search for any key k takes O(lg n) time with high probability.

* As part of backward analysis, consider path P r obtained by reversing P , so that P r goes from y ∈ ℓ0
to x ∈ ℓr. From Observation 2, P r moves up till it reaches the top node of a pile and then goes left,
and this repeats up till it reaches x. Specifically, at any node v, the node above v belongs to P r with
probability equal to the probability of obtaining heads with a coin flip and the node left of v belongs
to P r with probability equal to the probability of obaining tail with a coin flip.

Since we know the expected number of vertical moves in P r is O(lg n), the path length of P r is
essentially the total number of moves needed to obtain O(lg n) vertical moves. This is equivalent to
number of coin flips needed until O(lg n) heads are obtained.

For c′ > 1, probability that there are exactly c lg n heads in c′c lg n coin flips is

=
(
c′c lgn
c lgn

)
· (12)

(c′−1)c lgn(12)
c lgn.

Hence, for c′ > 1, probability that there are at most c lg n heads in c′c lg n coin flips is

≤
(
c′c lgn
c lgn

)
· (12)

(c′−1)c lgn (ignoring the term due to heads)

≤ (e c
′c lgn
c lgn)c lgn · (12)

(c′−1)c lgn (since
(a
b

)
≤ (ea

b
)b)

= (c′e)c lgn2−(c′−1)c lgn

= 2lg ((c
′e)c lgn)2−(c′−1)c lgn

= 2(lg (c
′e)−(c′−1))c lgn

= 1
n((c′−1)−lg ((c′e))c .

For c′ = 10, this is already polynomially small. That is, in 10c lg n coin flips, the probability of
having > c lg n heads is large. Hence, the path length is ≤ 10c lg n with high probability.

The algorithm to search for any key k takes O(lg n) time in expectation.

* Let C(j′) be the expected number of steps to walk up j′ top levels to reach x. Then,

C(j′) = cost of visiting current node +

(probability of not moving up ∗C[j′])+

(probability of moving up ∗C[j′ − 1]) for j′ > 0, and C(0) = 0.

Since C(j′) is again appearing on the right-hand side in this recurrence, it appears the expected
number of moves is not changing when the path stays in the same level. However, multiplying C(j′)
with the probability of not moving up is mitigating the fact C(j′) not changing.

Rearranging terms of this recurrence, C(j′) = 1 + 1
2 · C(j′) + 1

2 · C(j′ − 1)

⇒ C(j′) = 2 + C(j′ − 1).

Unraveling this recurrence leads to C(j′) = 2j′, since C(0) = 0.

Since the maximum value of j′ is r, C(r) = 2r.

Since r is O(lg n) in expectation, C(r) is O(lg n). This is precisely the number of moves to walk
up r levels, the search path length.

3

• Algorithm to insert a key ki into the skip list:

On the search path for ki, if ki is ever encountered, then this algorithm exits. Hence, to describe this
algorithm, it is reasonable to assume ki is not in the skip list. When the search algorithm is invoked from
the algorithm to insert any key ki, in every level ℓ from r to 0, a pointer to node containing the largest
key in ℓ that is less than ki is pushed to stack. Note that, at every node v′ pushed to stack, search path
moves downwards at v′. A subset of these nodes on stack help in inserting key k into singly linked lists
in levels to which ki belongs to. Suppose tossing a coin yielded ℓi number of heads before obtaining a
tail. Then, a pile Pi of length ℓi + 1 is initiated by setting key of each node in Pi to ki and by initializing
appropriate vertical downward pointers of nodes in Pi. Then, one node of Pi is introduced in each of the
levels in [0, ℓi]: for each node v′′ ∈ Sj of the first ℓi + 1 nodes that are popped from the stack, a node
v′′′ ∈ Pi ∩ Sj with v′′′.key = ki is inserted after v′′ in the linked list to which v′′ belongs. Of course, if
it is known that the insertion algorithm is invoked only on keys that are not in the skip list, then the stack
is not required since ki can be inserted into every level ℓ ∈ [0, ℓi], just after the largest key in ℓ that is
less than ki (similar to deletion algorithm mentioned below). The degenerate case of ℓi > r is handled by
including more nodes into sentinel piles.

Algorithm to delete key ki:

To delete ki, the algorithm searches for the predecessor k′i of ki. In every level ℓ from r to 0 on the search
path of k′i, for the node v containing the largest key in ℓ that is less than ki, if the horizontal pointer from
v is to a node v′ with key ki, then delete v′ from the linked list in ℓ. Again, if this deletion leads to number
of levels reducing, then the sentinel piles are cleaned up accordingly.

Since the time complexity of insertion (resp. deletion) algorithm is dominated by the length of the search
path it computes, the insertion (resp. deletion) of a key into (resp. from) skip list takes O(lg n) time in
expectation, and is accomplished in O(lg n) time with high probability.

References:

- Randomized Algorithms by R. Motwani and P. Raghavan. Cambridge University Press. 1995.

- Skip Lists: A Probabilistic Alternative to Balanced Trees. William Pugh. Communications of the ACM.
33(6): 668–676, 1990.

- Plus, the folklore.

4

