
Geometry and Algbera of LP R. Inkulu

• The vectors V = {v1, v2 . . . , vn} are linearly independent if
∑

i αivi = 0 and ∀iαi ∈ R imply that
∀iαi = 0.

A vector space or linear space V in Rn is a nonempty subset of Rn closed under vector addition and scalar
multiplication.

A set of vectors in V are said to span V whenever every vector in V can be expressed as a linear combi-
nation of vectors in V and any vector not in V cannot be expressed as a linear combination of vectors in
V .

The vectors in V form a basis of V iff vectors in V are linearly independent and span(V ) = V iff vectors
in V are linearly independent and including any vector not in V into V makes vectors in V linearly
dependent. Though it is not necessary for a vector space to have a unique basis, the number of vectors in
any basis of V is the same. The dimension of V is the number of vectors in any basis of V .

For a matrix A, the vector space spanned by the columns of A is called the column space, a.k.a., range
space, C(A) of A. The rank of A is the dimension of C(A).

For a matrix Am×n with n ≤ m, the nullspace a.k.a., kernel of A is the set comprising vectors in {x :
Ax = 0}. And, the rank of nullspace of A is equal to n− rank(A).

• Given vectors x1, . . . , xk ∈ Rn and λ1, . . . , λk ≥ 0 with
∑k

i=1 λi = 1, we call x =
∑k

i=1 λixi a convex
combination of x1, . . . , xk.

For a point p belonging to line segment p′p′′, there exists a α ∈ [0, 1] such that p = αp′+(1−α)p′′. That
is, p is a convex combination of p′ and p′′.

• A set S is called a convex set if for every two points x, y ∈ S, every point on the line segment joining x
and y is contained in S.
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Equivalently, a set S is convex if for every set S′ of points located in S, the convex combination of points
in S′ also belongs to S.

The intersection of any number of convex sets in Rn is convex.

• Let S ⊆ Rn be a convex set. The function f : S → R is a convex function in S if for any two points
x, y ∈ S, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)) for λ ∈ R and 0 ≤ λ ≤ 1. Ex., x2, ex, |x|.

• The convex hull of a set S, denoted by CH(S), is the smallest convex set that contains S. That is, the
convex hull of S is the intersection of all convex sets that contain S.

Let CC(S) be the set that precisely comprises of all the connvex combinations of points in S. Then,
CC(S) = CH(S).

For any set S and S′ ⊆ S, CH(S′) ⊆ CH(S).

1

http://www.iitg.ac.in/rinkulu/


• Caratheodory’s theorem: For a point x ∈ Rd, suppose x is expressed as a convex combination of k > d+1
number of points in Rd. Then, x can be expressed as a convex combination of at most d+ 1 points.

• An extreme point of a convex set S is a point p in S which cannot be expressed as a convex combination
of points in S − {p}. In other words, a point p ∈ S is an extreme point of S if and only if p is a vertex of
CH(S).

• The vectors v1, . . . , vr are affinely independent if
∑

i αivi = 0,∀iαi ∈ R, and
∑

i αi = 0 together imply
that ∀iαi = 0.

An affine space A in Rn is the space resulting from adding a fixed vector t to all the elements of a linear
space S, i.e., A = {t+ y |y ∈ S}. (For example, a plane in R2 not necessarily passing through the origin
is an affine space.) The dimension of A is the dimension of S. If B is an arbitrary subset of Rn, then the
dimension of B is the smallest dimension of any affine space containing B.

A hyperplane in Rn is an affine subspace of dimension n− 1; in other words, it is the set of all solutions
of a linear equation of the form a1x1 + . . .+ anxn = b, where a1, . . . , an are not all 0.

The hyperplane with equation a1x1 + . . . + anxn = b induces two closed half-spaces: {x ∈ Rn :
x1 + . . .+ anxn ≤ b} and {x ∈ Rn :1 x1 + . . .+ anxn ≥ b}.

• For some matrix A ∈ Rm×n and some vector b ∈ Rm, the set P comprising points in {x ∈ Rn :
Ax ≤ b} is a polyhedron (a.k.a., H-polyhedron or polyhedral set). That is, the convex set obtained by the
intersection of a finite number of affine halfspaces is a polyhedron. If A and b are rational, then P is a
rational polyhedron. A bounded H-polyhedron is called a H-polytope.

A subset P of Rn is called a polytope (a.k.a., V -polytope) if P is the convex hull of a finite number of
vectors.

Minkowski-Weyl’s theorem: A subset P of Rn is a polytope if and only if it is a bounded polyhedron.

A polyhedron P is pointed if it has at least one vertex.

• The dimension of a convex polyhedron P ⊆ Rn is the smallest dimension of an affine subspace containing
P . Equivalently, it is the largest d ≤ n for which P contains points x0, x1, . . . , xd such that the d-tuple of
vectors (x1 − x0, . . . , xd − x0) is linearly independent. That is, the dimension is the maximum number
of affinely independent points in P minus 1. If the dimension of P is n then P is full-dimensional.

• For a hyperplane H , if H ∩ P ̸= ϕ and P is entirely contained in one of the closed half-spaces defined
by H then H is called a supporting hyperplane of P . Formally, let P = {x : Ax ≤ b} be a nonempty
polyhedron. If c is a nonzero vector for which δ = max{cx : x ∈ P} is finite, then {x : cx = δ} is called
a supporting hyperplane of P .

• A face of P is P itself or the intersection of P with a supporting hyperplane of P .

F is a face of P if and only if F = {x ∈ P : A′x = b′} ≠ ϕ for some subsystem A′x ≤ b′ of Ax ≤ b.

A point x for which {x} is a face is called a vertex of P . That is, a vertex is a 0-dimensional face. An
edge is a 1-dimensional face.
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A facet of P is any maximal face distinct from P . An inequality cx ≤ δ is facet-defining for P if cx ≤ δ
for all x ∈ P and {x ∈ P : cx = δ} is a facet of P .

• Asymptotic upper bound theorem: A d-dimensional polytope with n vertices has O(n⌊d/2⌋) facets and
O(n⌊d/2⌋) faces.

Since any polytope formed with f half-spaces can have at most f facets, in d-dimensions, the maximum
number of vertices a polytope has is Θ(f ⌊d/2⌋).

• Separation theorem: Let S ⊆ Rn be a finite set and let v ∈ Rn\CH(S). Then there exists an inequality
wTx ≤ t that separates v from CH(S), that is, wT s ≤ t for all s ∈ CH(S) but wT v > t.

• Theorem of the alternatives: The system Ax ≤ b has no solution x ∈ Rn if and only if there exists y ∈ Rm

such that y ≥ 0, AT y = 0 and bT y < 0.

Farkas’ lemma: The system Ax = b has a nonnegative solution if and only if there is no vector y satisfying
yTA ≥ 0 and yT b < 0.

• The linear constraints together form a convex feasible region, which is a convex polyhedra.
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• The LP min{cTx : Ax ≥ b, x ≥ 0} is unbounded from below if there exists a feasible x such that
cTx < λ for every real number λ. (Analogous definition applies to maximization LP as well.) When the
feasible region is empty, then the LP is said to be infeasible. Any linear program either (i) has an optimal
solution with a finite objective value, (ii) is infeasible, or (iii) is unbounded.
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unbounded

• Consider an LP max{cTx : Ax = b, x ≥ 0}. Let B be a basis of A. The basic solution corresponding to
basis B is a vector x ∈ Rn with (i) for every j /∈ B, xj = 0, and (ii) for every j ∈ B, the kth element
of column vector x is equal to the kth element of B−1b. If x is both basic and feasible, then x is a basic
feasible solution. Every basic feasible solution is uniquely determined by the set B. The variables xj with
j ∈ B the basic variables and the remaining variables are the nonbasic variables.
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• Let A be a m × n matrix with full row rank. Then, every feasible x to P = {x : Ax = b, x ≥ 0} is a
basic feasible solution if and only if x is an extreme point solution. (Note that after introducing slack variables for each

constraint, any LP can be transformed to a linear program in standard form: {x : Ax = b, x ≥ 0}.)

The rank lemma: Let P = {x | Ax ≤ b} be a polyhedron in Rn and let z ∈ P . Also, let Az be the
submatrix of A consisting of those rows ai of A for which aiz = bi. Then z is an extreme point of P if
and only if rank(Az) = n.

Every basic feasible solution corresponds to one and only one vertex. And, there exists a basic feasible
solution corresponding to every vertex of F . However, the correspondance between bases and basic
feasible solutions is not one to one: there can be many bases, each of which corresponds to the same basic
feasible solution. When more than two different bases correspond to the same basic feasible solution x,
then x contains more than n−m zeros, and such an x is said to be a degenerate solution.

• The objective function is a family of parallel hyperplanes; the objective function value is fixed along any
one such hyperplane. Significantly, for the set S of points satisfying the given constraints, max{wTx :
x ∈ S} = max{wTx : x ∈ bd(CH(S))}.
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An optimal solution corresponding to a basic feasible solution is called a basic optimal solution. As every
supporting hyperplane contains at least one vertex, there exists a vertex at which optimum is guaranteed
to occur.
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Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cTx : x ∈ P} is finite. Then, for every x ∈ P , there
is an extreme point solution x′ ∈ P such that cTx′ ≤ cTx, i.e., there is always an extreme point optimal
solution.

Hence, LP is a combinatorial optimization problem even though it seem to be a continuous optimization
problem! (Some say it lies on the boundary of continous and discrete optimization problems.)

• Local optima is the global optima for any LP: Consider an optimization problem with feasibility con-
straints F and objective function f , where F ⊆ Rn is a convex set and f is a convex function defined over
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the domain F . Then, the global optimality equals the local optimality whenever the locality is defined
with respect to an ϵ-radius Euclidean closed ball B, that is, if f(x) is locally optimum (say, minimum),
then ∀y∈Bf(x) ≤ f(y).

• Dantzig’s simplex algorithm:

A variable whose value is currently set to 0 is called a nonbasic variable; and, a variable whose value is
currently not equal to 0 is called a basic variable. At any time of execution of the simplex algorithm, every
variable is either a basic or a nonbasic variable.

In every iteration of simplex algorithm, one nonbasic variable becomes a basic variable and one basic
variable becomes a nonbasic variable; for two adjacent vertices of a LP polytope, the basic and nonbasic
sets are identical except for these. Hence, in every iteration, choose the nonbasic variable that gives
the fastest rate of increase in the objective function value as the entering basic variable, and choose the
basic variable that most limits the increase in the value of the entering basic variable as the leaving basic
variable. Significantly, the updated solution vector in any iteration is guaranteed to improve the objective
function value; besides, the new solution vector corresponds to a vertex of the LP polytope.

If the objective function value cannot be increased by increasing the values of any of the variables on
which it depends, then the simplex must have arrived to optimality.

(1) corresponding to a vertex of the LP polytope, initialize the basic variables.

(2) while (the current solution is not optimal)

(i) choose entering and leaving basic variables
(ii) update the current solution vector

Using the asymptotic upper bound theorem, the worst-case time was proven to be exponential in the
number of variables. Klee & Minty provided instances (known as Minty’s cube) on which the algorithm
indeed visits all the vertices of the polytope. However, it does well in practice. Specifically, under various
probability distributions over the input, the simplex algorithm is proven to be taking polynomial time in
the average-case.

• Kachiyan’s Ellipsoid algorithm:

P

(1) start with an ellpsoid E that contains all the basic feasible solutions of the given LP

(2) invoke a separation oracle O, which is given as input, with center c of the ellipsoid E:

if c is feasible, O returns a constraint C:
∑

j djxj ≤
∑

j djcj for the objective function
∑

j djxj

else O returns a violated constraint C:
∑

j ajxj ≤ b for the center c, i.e., the current set of basic
feasible solutions and c are on different sides of C
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- in both the cases, one of the hyperspaces HC defined by C contains a basic optimal solution (if one
exists for the given LP)

(3) compute a minimum volume elliposid E′ that contains the region common to both E and HC

(4) set E := E′; and go to step (2) unless the ellipsoid is sufficiently small so that it can contain at most
one basic feasible solution, if any (if one exists, then this must be a basic optimal solution)

This algorithm takes O(n6Lt) time, where n is the number of variables, L is the number of bits in encoding
the input instance, and t is the time complexity of the separation oracle; the time does not depend on the
number of constraints! In practice, this algorithm does not perform as good as the simplex algorithm.
And, due to square-root operations involved, rounding errors need to be handled carefully.

However, the user of this algorithm requires to provide a separation oracle: given a point p either determine
that p is in the polytope P corresponding to the given LP or find a constraint aTx ≤ b that contains P
but aT p > b. For some LPs, oracles that do better than explicitly checking p versus each constraint are
possible, i.e., a polynomial-time oracle exists even when the number of constraints is exponential! Hence,
subjected to the efficiency of separation oracle provided, the Ellipsoid method take only polynomial time
even when the number of constraints is exponential.

Ex. relaxed LP for arborescence rooted at r:

min
∑

(i,j)∈E cijxij∑
(i,j)∈E,i∈S,j∈V−S xij ≥ 1 for every S ⊆ V, r ∈ S ———– (1)

0 ≤ xij ≤ 1 for every (i, j) ∈ E

separation oracle: detecting a violated constraint among inequalities in (1) is equivalent to finding a
r-t min-cut for some t ∈ V − {r} such that the cut capacity is less than one when the weight of arc
(i, j) is set to xij for every arc (i, j); other constraints can be checked explicitly

• Karmakar’s interior point algorithm: takes O(n3.5L2(lgL)(lg lgL)) time; in practice, competes with (or,
does better than) the simplex algorithm. Here, n is the number of variables, and L is the number of bits in
encoding the input instance. In practice, this algorithm does not perform as good as the simplex algorithm.
And, like in Ellipsoid algorithm, there are rounding errors due to square-root operations.

The hunt is on for a strongly polynomial time algorithm.

• Primal-dual LP pairs -

primal LP:

min
∑n

i=1 cixi

ai1x1 + ai2x2 + . . .+ ainxn = bi i ∈ M

ai1x1 + ai2x2 + . . .+ ainxn ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj <> 0 j ∈ N

dual LP:

max
∑m

j=1 bjyj

yi <> 0 i ∈ M

yi ≥ 0 i ∈ M

a1jy1 + a2jy2 + . . .+ amjym ≤ cj j ∈ N

a1jy1 + a2jy2 + . . .+ amjym = cj j ∈ N
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• Weak duality theorem: Let x∗, y∗ be feasible solutions of primal and dual LPs respectively. Assuming the
primal LP is a minimization LP,∑m

i=1 biy
∗
i ≤

∑n
j=1 cjx

∗
j

A consequnce of weak duality theorem: If
∑m

i=1 biy
∗
i =

∑n
j=1 cjx

∗
j then x∗ and y∗ are optimal solutions

to the primal and dual LPs respectively.

• Strong duality theorem: The primal LP has an optimal solution if and only if the dual LP has an optimal
solution. At optimality, cost of primal LP equals to the cost of dual LP.

• Complementary slackness conditions: A pair x∗, y∗ respectively feasible in a primal-dual LP pair is opti-
mal if and only if

∀i yi((ai1x1 + ai2x2 + . . .+ ainxn)− bi) = 0, and

∀j (cj − (a1jy1 + a2jy2 + . . .+ amjym))xj = 0.

The former conditions are known as the pimal complementary slackness conditions whereas the latter are
the dual complementary slackness conditions.

• For primal and dual LPs P and D, one of the following four statements must hold: (i) both P and D are
feasible, (ii) P is infeasible and D is unbounded, (iii) P is unbounded and D is infeasible, and (iv) both
P and D are infeasible.

• If the coeffiecients in the constraint matrix, objective function, and the RHS vector are all non-negative in
the LP, then that LP is called a covering LP. The dual of a covering LP is called a packing LP.

• Let P be a polytope and let x be an extreme point solution of P , then x is integral if each coordinate of x
is an integer. The polytope P is called integral if every extreme point of P is integral.

• The integer linear programming (ILP) is a linear program in which the variables are restricted to be
integers. The decision version of the ILP problem is NP-complete.

• A square, integer matrix M is called unimodular (UM) if det(M) = ±1. An integer matrix M is called
totally unimodular (TUM) if every square, nonsingular submatrix of M is unimodular.
Examples for TUM matrices include node-arc incidence matrix of a directed graph (occurs in ILPs corre-
sponding to shortest path, maximum flow, Hitchcock problems) and the node-edge incidence matrix of an
undirected bipartite graph (occurs in ILPs of maximum weighted bipartite perfect matching).

If A is TUM and b is integral, then the basic solutions corresponding to both LPs {x : Ax = b, x ≥ 0, x
integer} and {x : Ax = b, x ≥ 0} are same.
Analogously, if A is TUM and b is integral, then the basic solutions corresponding to both LPs {x : Ax ≤
b, x ≥ 0, x integer} and {x : Ax ≤ b, x ≥ 0} are same.

• For a minimization (resp. maximization) ILP, the integrality gap of an ILP is defined as the supremum of
OPT (ILP )

OPT (LPrelaxed)
(resp. OPT (ILP )

OPT (LPrelaxed)
) over all problem instances.
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The integrality gap enforces a limit on the approximation power of our relaxation: It is not possible, at
least for any algorithm that derives its performance guarantee by comapring its value to that of the LP
relaxation, to get an approximation factor better than the integrality gap of that ILP.

Ex: Consider the following LP relaxation for the vertex cover ILP:

min
∑

v∈V xv s.t.

xv + xw ≥ 1 ∀(v, w) ∈ E

xv ≥ 0 ∀v ∈ V

For Kn, an integral solution need to choose n − 1 vertices. Again, a feasible fractional solution assigns
xv = 1

2 to all vertices, with the objective value n
2 . Therefore, the integrality gap for Kn is at least n−1

n/2 ,
which is equal to 2(1− 1

n), i.e., the integrality gap approaches 2 as n tends to infinity.
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