• Given a set of n points, any subset of k points that can be separated from the other n-k points by a hyperplane is called a k-set.

For the planar case, the upper bound on the number of k-sets in a set of n points is $O(nk^{1/3})$. [Dey '98]

- First note the following: For a given set of n points in the plane in general position, a pair of points $p, q \in P$ form a k-set if there are exactly k points in the (closed) halfplane below the line passing through p and q.
- Consider the graph G(P,E) that has an edge for every k-set edges of G can be decomposed into k-1 (resp. n-k+1) convex chains any crossing of two edges of G is an intersection point of one convex chain of C_1,\ldots,C_{k-1} with a concave chain of D_1,\ldots,D_{n-k+1} ; hence, there are at most 2(k-1)(n-k+1) crossings of $G\Rightarrow m^3/n^2=O(nk)$, which implies $m=O(nk^{1/3})$

The maximum number of k-sets in a set of n points located in \mathbb{R}^d is still unknown.

• The k-level in an arrangement A(H) induced by a set H of n hyperplanes is defined as the set of points with at most k-1 hyperplanes strictly above it, and at most n-k hyperplanes strictly below it.

For the planar case, the upper bound on the complexity of any k-level in an arrangement of n lines is $O(nk^{1/3})$.

- since the k-level problem is the k-set problem in the dual setting

The tight bounds on the maximum complexity of any k-level is still unknown, even in the planar case.

- Assuming lines are in general position, the number of vertices of level at most k in an arrangement A(H) of set H of n lines in the plane is O(nk).
 - * choose a subset $R \subseteq H$ at random, by including each line $h \in H$ into R with probability p; let f denote the number of vertices of level 0 in the arrangement A(R); $E[f] \leq E[|R|] = pn$
 - * for any vertex v of A(H), let A_v be an event of v becoming one of the vertices of level 0 in A(R); $p[A_v] = p^2(1-p)^{\ell(v)}$, where $\ell(v)$ denotes the level of v in A(H);
 - * let $V_{\leq k}$ (resp. V) be the set of vertices of level at most k (resp. V) in A(H);

$$np \geq E[f] = \sum_{v \in V} prob(A_v) \geq \sum_{v \in V_{\leq k}} prob(A_v) = \sum_{v \in V_{\leq k}} p^2 (1-p)^{\ell(v)} \geq |V_{\leq k}| p^2 (1-p)^k \Rightarrow |V_{\leq k}| \leq \frac{n}{p(1-p)^k};$$
 choosing $p = \frac{1}{k+1}$ to (approximately) maximize RHS gives $|V_{\leq k}| \leq 3(k+1)n$

Clarkson-Shor theorem: The number of vertices of level at most k in an arrangement of n hyperplanes in \mathbb{R}^d is $O(n^{\lfloor d/2 \rfloor}(k+1)^{\lceil d/2 \rceil})$.

- proof is a generalization of the above argument
- Given a set of n points in the plane, any subset of at most k points that can be separated from all other point (there are at least n-k of them) by a line is called a $(\leq k)$ -set.

In the plane, the maximum number of $(\leq k)$ -sets is $\Theta(nk)$, and it is $\Theta(n^{\lfloor d/2 \rfloor}(k+1)^{\lceil d/2 \rceil})$ in \mathbb{R}^d .

References:

- Lectures on Discrete Geometry by J. Matousek.