Leftist Heap R. Inkulu

* This data structure implements the priority queue ADT. While max binary heaps support melding of two
max binary heaps in O(n) time, as we see below, the leftist heap melds a pair of leftist heaps in o(n) time.
The time complexities of all other functions of leftist heaps are same as for the binary heaps.

* For any rooted binary tree 7" with a key stored at each of its nodes, for the convenience of anlaysis, we
attach a set S’ of nodes, called external nodes (dummy nodes), to 7" so that the resulting rooted binary
tree T satisfies the following two properties: each internal node of 7" has exactly two children, and the set
comprising leafs of T is equal to S’. We assume every tree that we consider here is a rooted binary tree
with external nodes.

e For any two nodes v’, v of a tree T, the distance between v’ and v” is the number of edges on the unique
path between v’ and v” in T'. For any node v of T', among all the leafs in Ty, let £ € T, be the leaf that is
at a minimum distance from v. Then the distance between v and ¢ is denoted by s(v).

For every external node v of T', s(v) = 0.
For every internal node v of 7', s(v) = 1 + min(s(v.left), s(v.right)).

* A rooted binary tree is a leftist tree whenever V,crs(v.left) > s(v.right). This is known as the leftist
tree property. Due to this property, these leftist trees are height-biased. Specifically, for every node v of
T, a leaf at minimum distance from v occurs on the right spine of 7.

« Let v be any internal node of a leftist tree. Then, the number of nodes n’ in T}, is > 25(*) — 1.
(proof: n/ > 20 + 21 + ... + (s(z) terms))

Since n/ > 2°(%) — 1, significantly, s(v) < lg, (n/ + 1).

* A leftist max-heap is a max heap-ordered leftist tree, that is, it is a leftist tree and the tree is max heap-
ordered with respect to keys stored at its internal nodes.

Every node v of a leftist (max-)heap stores s(v) with it.

* Given two leftist heaps H; and Ho, the following algorithm merges their right spines for building a max
heap-ordered binary tree and then transforms it into a leftist tree:

(1) Without loss of generality, let H;.root.key is the maximum among H;.root.key and Ho.root.key.
Then, H.root as the root r, Hy.root.le ft as the left subtree of 7, and meld(H;.root.right, Ha.root)
as the right subtree of r is a heap ordered binary tree 7.

(2) While traversing T upwards to root from the last node at which meld is last invoked, for every node
v that occurs along this path,

if s(v.left) < s(v.right), exchange v.le ft and v.right so that v.le ft is the right child of v
and v.right as the left child of v

update s(v).

Essentially, the meld operation performs a top-to-bottom pass as the recursion unfolds and then a bottom-
to-top pass in which subtrees are possibly swapped and s-values are updated.


http://fac.iitg.ac.in/rinkulu/

Let H be the output produced by the above algorithm. We prove the correctness of this algorithm by
inducting on the number of nodes in H. The left subtree of root of H is a leftist heap since it is a
subtree of leftist heap H;. From the induction hypothesis, meld(H;.root.right, Hy.root) is a leftist
heap. Due to comparison, H.root.key is the largest among all the keys in H. Hence, H is heap-ordered.
To transform this heap-ordered tree into a leftist tree, if s(H.root.left) > s(H.root.right), Step (2)
exchanges H.root.left and H.root.right, and s(H.root) is updated.

The length of the right spine formed while traversing root-to-leaf path is 1g(n1) + lg(n2), where n; and
ngy are the number of nodes in H; and Hs respectively. Hence, it is O(lgn). While traversing downwards
(Step (1)), at every node, excluding the time for recursive processing, O(1) time is spent in comparing
two keys. The Step (2) involves exchanging left and right subtrees at select nodes along the merged right
spine, each such exchange takes O(1) time. Therefore, melding a pair of leftist heaps takes O(lgn) time,
where n = nj + no.

insert(H, x): initialize a heap H’ with node x; meld H and H’
takes O(lgn) time

maximum(H): takes O(1) time since max key is stored at the root
extractMax(H): return meld(root.left, root.right)

takes O(lgn) time

Given a set S of n keys, build a leftist heap comprising these keys.

First, initialize n leftist heaps, each with a unique key from S. The obvious approach of melding the first
two of these heaps, melding the resultant with the third heap, etc., is correct but leads to a time complexity,
lg2+ ...+ lgn, which is ©(nlgn). In an alterantive approach, place these n leftist heaps on a queue Q).
And, then,

while(there exist more than one heap in Q)

dequeue a pair of heaps from (), meld them, and enqueue the resultant heap into ()

The correctness of this algorithm is immediate from the correctness of algorithm for melding a pair of
leftist heaps.

For the convenience of analysis, assume n is a power of two. After melding 4 pairs of leftist heaps, there
are 7 leftist heaps, each with two nodes; after melding % pairs of leftist heaps, there are 7 leftist heaps,
each with four nodes; after melding ¢ pairs of leftist heaps, there are g leftist heaps, each with eight
nodes; etc. Hence, the time complexity is O(5 1g (2) + 7 1g (4) + § 1g (8) +. ..+ (Ign+1) terms), which
SO(2+2(2)+2B)+...)=0(nX2, %) =0(n).

delete(H, x): replace the subtree rooted at = with the leftist heap returned by meld(x.le ft, x.right);
update s values on the path from z.parent to the root and swap subtrees on this path as necessary to
maintain the leftist tree property

Since the s value updation pass halts as soon as the algorithm encounters a node whose s value does
not change, since the maximum s value is O(lgn), and since the modified s values form an ascending
sequence (incremented by one along that subpath), there are O(lg n) nodes encounted in updating s values.



At every node v along this subpath, algorithm takes O(1) time to swap subtrees (if required) and to update
the s value of v. Hence, the deletion algorithm takes O(lg n) time in the worst-case.

* increaseKey(H, x, k): delete(H, x); insert(H, k)
takes O(lgn) time

» This data structure has a couple of disadvantages: It is not self-adjusting, as each node v needs to save
s(v). The meld operation performs two traversals of a root to leaf path (instead of one).



