(1) Fix a field \mathcal{F} and choose an element $r \in \mathcal{F}$ uniformly at random from \mathcal{F} :

* Verifying polynomial identities: Given two polynomials $f(x)=\Pi_{i=1}^{n}\left(x-a_{i}\right)$ (in this form) and $g(x)=$ $\sum_{i=0}^{n} c_{i} x^{i}$ (in this form), devise a Monte Carlo algorithm to verify whether $f(x)=g(x)$ in $O(n)$ expected time.
- Algorithm: Fix a field of integers $[1, j]$ and choose an element $r \in[1, j]$ uniformly at random. (The value of j is to be set shortly.) If $f(r)=g(r)$ then print "input polynomials are equal" else print "input polynomials are not equal".

While it is immediate $f(r)$ can be computed in $O(n)$ time, by applying Horner's rule, $g(r)$ is also computable in linear time.

- This algorithm errs only if $f(x) \neq g(x)$ but $f(r)=g(r)$. Hence, it is a Monte Carlo algorithm with one-sided error. Specifically, algorithm's ouput is incorrect whenever r is a root of $f(x)-g(x)=0$ but $f(x) \neq g(x)$. Since the number of roots of $f(x)-g(x)=0$ is at most n, by setting $j=1000 n$, this algorithm returns a wrong answer with probability at most $\frac{n}{1000 n}=\frac{1}{1000}$.
Noting that choosing a $r \in[1,1000 n]$ takes $O(\lg n)$ time in expectation, the time complexity of this algorithm is $O(n)$ in expectation.
- Using the abundance of witnesses paradigm, choose $r_{1}, r_{2}, \ldots, r_{k} \in[1,1000 n]$ uniformly at random. If $f\left(r_{i}\right)=g\left(r_{i}\right)$ for every $i \in[1, k]$, then print "input polynomials are equal" else print "input polynomial are not equal". Then, the probability algorithm outputs $f(x)=g(x)$ while $f(x) \neq g(x)$ is at most $\left(\frac{1}{1000}\right)^{k}$.

The prob of error could also be reduced by increasing the value of j, however, the value to be used is limited by the precision available. Besides, since rand $(1, k)$ takes $O(\lg k)$ time in expectation (assuming $\operatorname{rand}(0,1)$ takes $O(1)$ worst-case time), the overhead due to $\operatorname{rand}(1, j)$ needs to be accounted.

* Verifying matrix multiplication: Given three $n \times n$ matrices A, B, and C, devise a Monte Carlo algorithm to verify whether $A B=C$ in $O\left(n^{2}\right)$ time in the worst-case.
- Algorithm: Compute a vector $r=\left(r_{1}, r_{2}, \ldots, r_{i}\right)$ from the field $\{0,1\}^{n}$, while choosing each r_{i} uniformly at random from $\{0,1\}$. In $O\left(n^{2}\right)$ time, compute $X=A(B r)$; in $O\left(n^{2}\right)$ time, compute $Y=C r$. If $X \neq Y$, then print ' $A B \neq C$ ' else print ' $A B=C^{\prime}$.
- The above algorithm outputs an incorrect answer only if $A B \neq C$ but $X=Y$.

That is, $A B \neq C \Leftrightarrow D=(A B-C) \neq 0 \Leftrightarrow D$ must have some nonzero entry, say $d_{i j}$.
$X=Y \Leftrightarrow(A B-C) r=0 \Rightarrow \sum_{k=1}^{n} d_{i k} r_{k}=0 \Leftrightarrow r_{j}=\frac{-\left(\sum_{k=1}^{n} d_{i k} r_{k}\right)+d_{i j} r_{j}}{d_{i j}}$.
Suppose r_{j} is chosen last among all r_{i} s. By the time r_{j} is chosen uniformly at random from $\{0,1\}$, equality holds whenever r_{i} is set to exactly one of $\{0,1\}$. That is, (1) holds whenever r_{i} is chosen so that (2) is satisfied. Therefore, (1) holds with probability at most $\frac{1}{2}$.

- Algorithm utilizing abundance of witnesses paradigm: Choose k random vectors, each from $\{0,1\}^{n}$. If $A\left(B r^{\prime}\right) \neq C r^{\prime}$ for any such random vector r^{\prime}, then print ' $A B \neq C$ ' else print ' $A B=C^{\prime}$. It is obvious that this reduces the error probability to at most $\left(\frac{1}{2}\right)^{k}$. Obviously, this algorithm takes $O\left(k n^{2}\right)$ time in the worst-case.
- This technique of verifying matrix multiplication is knows as the Freivalds' technique.
(2) Fix the point of evaluation a and choose a random field over which the evaluation of a is to be performed:
* Verifying equality of strings: Alice has string $A: a_{1}, \ldots, a_{n}$, and Bob has string $B: b_{1}, \ldots, b_{n}$, with every $a_{i}, b_{j} \in\{0,1\}$, Bob determines whether $A=B$ but Alice can afford to transmit only $o(n)$ bits to Bob. Devise a Monte Carlo algorithm with polynomially small error wherein Alice does transmit only $o(n)$ bits to Bob.
- Define points of evaluation $a=\sum_{i=1}^{n} a_{i} 2^{i-1}$ and $b=\sum_{i=1}^{n} b_{i} 2^{i-1}$. Define the fingerprint function $f_{p}(x)=x \bmod p$ for a prime p chosen uniformly at random from $\left[2, \tau=n^{2} \lg n\right]$.

Algorithm: if $f_{p}(a) \neq f_{p}(b)$ then print $A \neq B$ else print $A=B$.
Noting that $f_{p}(a)=f_{p}(b)$ iff p divides $|a-b|$, below, we upper bound $\operatorname{pr}\left(f_{p}(a)=f_{p}(b) \mid a \neq b\right)$.

- Observation: Since $|a-b|<2^{n}$, there can be at most n prime divisors of $|a-b|$. (Proof: If the number of distinct prime divisiors of $|a-b|$ are more than n, since each prime divisor is at least 2 , the $|a-b|>2^{n}$.)

From the prime number theorem, the number of primes less than or equal to τ is asymptotically $\frac{\tau}{\ln \tau}$; again, since only n among these can be divsors of $|a-b|$, when probability is taken over the random choices of p,
$p r\left(f_{p}(a)=f_{p}(b) \mid a \neq b\right)=p r(\mathrm{p}$ divides $|a-b| \mid a \neq b) \leq \frac{n}{\frac{\pi}{\tau} \tau}=\frac{n \ln \tau}{\tau}=\frac{n\left(\ln \left(n^{2}\right)+\ln (\lg (n))\right)}{n^{2} \lg (n)}=$ $\frac{1}{n}\left(\frac{2 \ln n}{\lg n}+\frac{\ln \lg n}{\lg n}\right)=O\left(\frac{1}{n}\right) . \leftarrow$ error is polynomially small, desirable since the error reduces as n grows
Further, since p is at most τ, the number of bits to be transmitted (at most p) from Alice to Bob is $O(\lg \tau)$, i.e., $O(\lg n)$.

Note that the most expensive operation in this algorithm is computing a $p \in[2, \tau]$. However, once a p is shared between Alice and Bob, fingerprints can be taken for any A and B.

- Significantly, in this problem, we fixed the points of evaluation ($a=\sum_{i=1}^{n} a_{i} 2^{i-1}, b=\sum_{i=1}^{n} b_{i} 2^{i-1}$) and for a random prime p of a reasonably small magnitude, fingerprints were obtained by evaluating a and b over the field Z_{p}.
- How many numbers one needs to choose in $[1, \tau]$ with replacement before the number chosen is prime?

View the process of randomly selecting a number and determining whether it is a prime as a Bernoulli trial. Further, we know, for a geometric random variable X that has value i if the success occurs at $i^{t h}$ trial, then $E[X]=\frac{1}{p}$. From the prime number theorem, $p=\frac{(\tau / \ln (\tau))}{\tau}=\frac{1}{\ln (\tau)}$. Hence, the expected number
of trials needed to obtain a prime number in $[1, \tau]$ is $\ln \tau$. Then, with AKS algorithm, the average-time to find a prime in $[1, \tau]$ is $O\left((\lg \tau)^{7}\right)$.

* Pattern matching: Let the alphabet Σ be $\{0,1\}$. Given a text string $T \in \Sigma^{*}$ of length n and a pattern string $P \in \Sigma^{*}$ of length m, for $m<n$, devise a Monte Carlo algorithm to find the smallest value of shift s such that $T[s+1 \ldots s+m]=P$.
- Algorithm: Choose a prime number p in $f_{p}(x)=x \bmod p$ unformly at random from the set of numbers in the range $\left[1, \tau=n^{2} m \lg \left(n^{2} m\right)\right]$. If $f_{q}(T[s+1 \ldots s+m])=f_{q}(P)$ then output shift s and exit; otherwise, try with shift $s+1$.
- Since $|T[s+1 \ldots s+m]-P|$ is an m-bit positive integer with value $<2^{m}$, there can be at most m distinct prime divisors to $|T[s+1 \ldots s+m]-P|$. The number of primes smaller than τ is asymptotically $\frac{\tau}{\ln \tau}$; again, only m among these can be divsors of $|T[s+1 \ldots s+m]-P|$.

When probability is taken over the random choices of q,

$$
\begin{aligned}
& \operatorname{pr}\left(\left(f_{q}(T[s+1 \ldots s+m])=f_{q}(P)\right) \mid(T[s+1 \ldots s+m] \neq P)\right) \\
& =\operatorname{pr}(q \operatorname{divides}(|T[s+1 \ldots s+m]-P|) \mid(T[s+1 \ldots s+m] \neq P)) \\
& \leq \frac{m}{\tau}=O\left(\frac{m \lg \tau}{\tau}\right)=O\left(\frac{1}{n}\right)
\end{aligned}
$$

- The worst-case time, ignoring the number of times to iterate for finding a prime, is $O(n+m)$.
(3) Interpret the bit vectors a and b as the n-bit integers a and b; fix a prime number $p>2^{n}$; choose a random polynomial over the field Z_{p}, and obtain the fingerprints by evaluating this polynomial at the integers a and b, performing all arithmatic over the field Z_{p}, and then reducing the resulting values modulo a number of magnitude close to $\lg n$.
- Let U be the universe comprising keys and let T be a hash table. Also, let $|T|=m$ and $|U|>m$.

A collection of hash functions \mathcal{H} is called a 2-universal hash family whenever (i) each function in \mathcal{H} is from U to T, and (ii) for any pair of distinct keys $k_{i}, k_{j} \in U$, the number of hash functions $h \in \mathcal{H}$ for which $h\left(k_{i}\right)=h\left(k_{j}\right)$ is at most $\frac{|\mathcal{H}|}{m}$.

A hash function h is a 2-universal hash function if h is chosen, uniformly at random and independent of keys being stored in T, from a 2-universal hash family. (Choosing independent of keys being stored ensures lesser number of collisions in expectation, even if keys are chosen by an adversary.)

With any 2-universal hash function h, for any pair of distinct keys $k_{i}, k_{j} \in U$, $\operatorname{pr}\left(h\left(k_{i}\right)=h\left(k_{j}\right)\right) \leq$ $\frac{|\mathcal{H}| / m}{|\mathcal{H}|}=\frac{1}{m}$. That is, a 2 -universal hash function obeys simple uniform hashing.

Below, we assume $a \in[1, p-1], b \in[0, p-1], U \in[0, p-1]$, and obviously every key $k \in U$. Let k, ℓ be two distinct keys, we define, $r=(a k+b) \bmod p$ and $s=(a \ell+b) \bmod p$. The following proofs are reproduced from pages 267-268 of [CLRS].

- Lemma 1: For (k, ℓ) with $k \neq \ell$, any fixed (a, b), leads to (r, s) with $r \neq s$ and $r \not \equiv s \bmod p$.

We know, $r-s \equiv a(k-\ell) \bmod p$. Since $a \neq 0\left(\right.$ from the definition of $\left.\mathcal{H}_{p m}\right)$, since $a \not \equiv 0 \bmod p$ (as $a \in[1, p-1])$, since $k-\ell \not \equiv 0 \bmod p($ as every key $k \in[0, p-1])$, and since their product must also be nonzero modulo $p, r-s \not \equiv 0 \bmod p$. Since p is a prime, this implies, $r \not \equiv s \bmod p$.

- Lemma 2: For (k, ℓ) with $k \neq \ell$, if (a, b) is chosen uniformly at random from $[1, p-1] \times[0, p-1]$, then the resulting pair (r, s) is equally likely to be any pair of distinct values modulo p.

Since $r=(a k+b) \bmod p$ and $s=(a \ell+b) \bmod p$,
$a=(r-s)\left((k-\ell)^{-1} \bmod p\right) \bmod p$, and $b=(r-a k) \bmod p$.

From these, we can find a and b, given r and s. Hence, each of the possible $p(p-1)$ choices for the pair (a, b) yields a different resulting pair (r, s) with $r \neq s$.

Since there are only $p(p-1)$ possible pairs (r, s) with $r \neq s$ (from Lemma 1), there is a one-to-one correspondance between pairs (a, b) and pairs (r, s) with $r \not \equiv s \bmod p$.

Thus, for any given pair of inputs k and ℓ, if we pick (a, b) uniformly at random from $[1, p-1] \times[0, p-1]$, the pair (r, s) is equally likely to be any pair with $r \not \equiv s \bmod p$.

Choosing tuple (a, b) uniformly at random from any of $p(p-1)$ number of tuples, $p r(r \neq s)=\frac{1}{p(p-1)}$.

- Theorem: Assuming every key $k \in[0, p-1]$,
$\mathcal{H}_{p m}=\left\{h_{a b}(k)=((a k+b) \bmod p) \bmod m: a \in[1, p-1], b \in[0, p-1]\right.$, for a prime $\left.p>m\right\}$ is a 2 -universal hash family.
[Here, choosing $h \in \mathcal{H}_{p m}$ uniformly at random is equivalent to choosing a and b uniformly at random respectively from $[1, p-1]$ and $[0, p-1]$. Significantly, given the universe and the hash table are fixed, to save any function from $\mathcal{H}_{p m}$, one needs to store only a and b.]

$$
\xrightarrow[\substack{r \neq s \\ \not \equiv s \bmod p}]{(r, s)} \leadsto \bmod m \xrightarrow[\text { with } p r]{ }\left(r^{\prime} \equiv s^{\prime} \bmod m\right) \leq \frac{1}{m}
$$

For $k \neq \ell$, it is immediate that $\operatorname{pr}\left(h_{a b}(k)=h_{a b}(\ell)\right)=\operatorname{pr}(r \equiv s \bmod m)$.
From (A), we know $\operatorname{pr}(r \neq s)$ is $\frac{1}{p(p-1)}$; leading to,
$\left.\left.\operatorname{pr}\left(h_{a b}(k)=h_{a b}(\ell)\right)=\frac{1}{p(p-1)} \cdot \right\rvert\,\{(r, s): r \neq s$ and $r \equiv s \bmod m\} \right\rvert\,$.
For a given value of r, of the $p-1$ possible remaining values for s, the number of values s such that $s \neq r$ and $s \equiv r \bmod m$ is at most $\left\lceil\frac{p}{m}\right\rceil-1 \leq\left(\frac{p+m-1}{m}\right)-1=\frac{p-1}{m}$.

Since r can assume p number of values, $\operatorname{pr}\left(h_{a b}(k)=h_{a b}(\ell)\right) \leq \frac{1}{p(p-1)} \cdot \frac{p(p-1)}{m}=\frac{1}{m}$.

References:

- Randomized Algorithms by R. Motawani and P. Raghavan. [Sections 7.1-7.2 and 7.4-7.6.]
- Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Third Edition. [pg 267-268]

