
Three fingerprinting techniques R. Inkulu

(1) Fix a field F and choose an element r ∈ F uniformly at random from F :

* Verifying polynomial identities: Given two polynomials f(x) = Πn
i=1(x − ai) (in this form) and g(x) =∑n

i=0 cix
i (in this form), devise a Monte Carlo algorithm to verify whether f(x) = g(x) in O(n) expected

time.

• Algorithm: Fix a field of integers [1, j] and choose an element r ∈ [1, j] uniformly at random. (The
value of j is to be set shortly.) If f(r) = g(r) then print ”input polynomials are equal” else print ”input
polynomials are not equal”.

While it is immediate f(r) can be computed in O(n) time, by applying Horner’s rule, g(r) is also com-
putable in linear time.

• This algorithm errs only if f(x) ̸= g(x) but f(r) = g(r). Hence, it is a Monte Carlo algorithm with
one-sided error. Specifically, algorithm’s ouput is incorrect whenever r is a root of f(x) − g(x) = 0 but
f(x) ̸= g(x). Since the number of roots of f(x) − g(x) = 0 is at most n, by setting j = 1000n, this
algorithm returns a wrong answer with probability at most n

1000n = 1
1000 .

Noting that choosing a r ∈ [1, 1000n] takes O(lg n) time in expectation, the time complexity of this
algorithm is O(n) in expectation.

• Using the abundance of witnesses paradigm, choose r1, r2, . . . , rk ∈ [1, 1000n] uniformly at random. If
f(ri) = g(ri) for every i ∈ [1, k], then print ”input polynomials are equal” else print ”input polynomial
are not equal”. Then, the probability algorithm outputs f(x) = g(x) while f(x) ̸= g(x) is at most
(1
1000)

k.

The prob of error could also be reduced by increasing the value of j, however, the value to be used is
limited by the precision available. Besides, since rand(1, k) takes O(lg k) time in expectation (assuming
rand(0, 1) takes O(1) worst-case time), the overhead due to rand(1, j) needs to be accounted.

* Verifying matrix multiplication: Given three n×n matrices A,B, and C, devise a Monte Carlo algorithm
to verify whether AB = C in O(n2) time in the worst-case.

• Algorithm: Compute a vector r = (r1, r2, . . . , ri) from the field {0, 1}n, while choosing each ri uniformly
at random from {0, 1}. In O(n2) time, compute X = A(Br); in O(n2) time, compute Y = Cr. If
X ̸= Y , then print ’AB ̸= C’ else print ’AB = C’.

• The above algorithm outputs an incorrect answer only if AB ̸= C but X = Y . ———- (1)

That is, AB ̸= C ⇔ D = (AB − C) ̸= 0⇔ D must have some nonzero entry, say dij .

X = Y ⇔ (AB − C)r = 0⇒
∑n

k=1 dikrk = 0⇔ rj =
−(

∑n
k=1 dikrk)+dijrj

dij
. ———— (2)

Suppose rj is chosen last among all ris. By the time rj is chosen uniformly at random from {0, 1},
equality holds whenever ri is set to exactly one of {0, 1}. That is, (1) holds whenever ri is chosen so that
(2) is satisfied. Therefore, (1) holds with probability at most 1

2 .

1

http://www.iitg.ac.in/rinkulu/

• Algorithm utilizing abundance of witnesses paradigm: Choose k random vectors, each from {0, 1}n. If
A(Br′) ̸= Cr′ for any such random vector r′, then print ’AB ̸= C’ else print ’AB = C’. It is obvious
that this reduces the error probability to at most (12)

k. Obviously, this algorithm takes O(kn2) time in the
worst-case.

• This technique of verifying matrix multiplication is knows as the Freivalds’ technique.

(2) Fix the point of evaluation a and choose a random field over which the evaluation of a is to be performed:

* Verifying equality of strings: Alice has string A : a1, . . . , an, and Bob has string B : b1, . . . , bn, with
every ai, bj ∈ {0, 1}, Bob determines whether A = B but Alice can afford to transmit only o(n) bits to
Bob. Devise a Monte Carlo algorithm with polynomially small error wherein Alice does transmit only
o(n) bits to Bob.

• Define points of evaluation a =
∑n

i=1 ai2
i−1 and b =

∑n
i=1 bi2

i−1. Define the fingerprint function
fp(x) = x mod p for a prime p chosen uniformly at random from [2, τ = n2 lg n].

Algorithm: if fp(a) ̸= fp(b) then print A ̸= B else print A = B.

Noting that fp(a) = fp(b) iff p divides |a− b|, below, we upper bound pr(fp(a) = fp(b) | a ̸= b).

• Observation: Since |a− b| < 2n, there can be at most n prime divisors of |a− b|. (Proof: If the number of distinct

prime divisiors of |a− b| are more than n, since each prime divisor is at least 2, the |a− b| > 2n.)

From the prime number theorem, the number of primes less than or equal to τ is asymptotically τ
ln τ ; again,

since only n among these can be divsors of |a− b|, when probability is taken over the random choices of
p,

pr(fp(a) = fp(b) | a ̸= b) = pr(p divides |a − b| | a ̸= b) ≤ n
τ

ln τ
= n ln τ

τ = n(ln (n2)+ln (lg (n)))
n2 lg (n)

=

1
n(

2 lnn
lgn + ln lgn

lgn) = O(1n). ← error is polynomially small, desirable since the error reduces as n grows

Further, since p is at most τ , the number of bits to be transmitted (at most p) from Alice to Bob is O(lg τ),
i.e., O(lg n).

Note that the most expensive operation in this algorithm is computing a p ∈ [2, τ]. However, once a p is
shared between Alice and Bob, fingerprints can be taken for any A and B.

• Significantly, in this problem, we fixed the points of evaluation (a =
∑n

i=1 ai2
i−1, b =

∑n
i=1 bi2

i−1) and
for a random prime p of a reasonably small magnitude, fingerprints were obtained by evaluating a and b
over the field Zp.

• How many numbers one needs to choose in [1, τ] with replacement before the number chosen is prime?

View the process of randomly selecting a number and determining whether it is a prime as a Bernoulli
trial. Further, we know, for a geometric random variable X that has value i if the success occurs at ith trial,
then E[X] = 1

p . From the prime number theorem, p = (τ/ ln (τ))
τ = 1

ln (τ) . Hence, the expected number

2

of trials needed to obtain a prime number in [1, τ] is ln τ . Then, with AKS algorithm, the average-time to
find a prime in [1, τ] is O((lg τ)7).

* Pattern matching: Let the alphabet Σ be {0, 1}. Given a text string T ∈ Σ∗ of length n and a pattern
string P ∈ Σ∗ of length m, for m < n, devise a Monte Carlo algorithm to find the smallest value of shift
s such that T [s+ 1 . . . s+m] = P .

• Algorithm: Choose a prime number p in fp(x) = x mod p unformly at random from the set of numbers
in the range [1, τ = n2m lg (n2m)]. If fq(T [s + 1 . . . s + m]) = fq(P) then output shift s and exit;
otherwise, try with shift s+ 1.

• Since |T [s+1 . . . s+m]−P | is an m-bit positive integer with value < 2m, there can be at most m distinct
prime divisors to |T [s + 1 . . . s +m] − P |. The number of primes smaller than τ is asymptotically τ

ln τ ;
again, only m among these can be divsors of |T [s+ 1 . . . s+m]− P |.

When probability is taken over the random choices of q,

pr((fq(T [s+ 1 . . . s+m]) = fq(P)) | (T [s+ 1 . . . s+m] ̸= P))

= pr(q divides (|T [s+ 1 . . . s+m]− P |) | (T [s+ 1 . . . s+m] ̸= P))

≤ m
τ

ln τ
= O(m lg τ

τ) = O(1n).

• The worst-case time, ignoring the number of times to iterate for finding a prime, is O(n+m).

(3) Interpret the bit vectors a and b as the n-bit integers a and b; fix a prime number p > 2n; choose a random
polynomial over the field Zp, and obtain the fingerprints by evaluating this polynomial at the integers a and
b, performing all arithmatic over the field Zp, and then reducing the resulting values modulo a number of
magnitude close to lg n.

• Let U be the universe comprising keys and let T be a hash table. Also, let |T | = m and |U | > m.

A collection of hash functions H is called a 2-universal hash family whenever (i) each function in H is
from U to T , and (ii) for any pair of distinct keys ki, kj ∈ U , the number of hash functions h ∈ H for
which h(ki) = h(kj) is at most |H|

m .

A hash function h is a 2-universal hash function if h is chosen, uniformly at random and independent
of keys being stored in T , from a 2-universal hash family. (Choosing independent of keys being stored
ensures lesser number of collisions in expectation, even if keys are chosen by an adversary.)

With any 2-universal hash function h, for any pair of distinct keys ki, kj ∈ U , pr(h(ki) = h(kj)) ≤
|H|/m
|H| = 1

m . That is, a 2-universal hash function obeys simple uniform hashing.

Below, we assume a ∈ [1, p− 1], b ∈ [0, p− 1], U ∈ [0, p− 1], and obviously every key k ∈ U . Let k, ℓ
be two distinct keys, we define, r = (ak + b) mod p and s = (aℓ+ b) mod p. The following proofs are
reproduced from pages 267-268 of [CLRS].

3

• Lemma 1: For (k, ℓ) with k ̸= ℓ, any fixed (a, b), leads to (r, s) with r ̸= s and r ̸≡ s mod p.

(k, ℓ)

k ̸= ℓ

any (a, b)

(r, s)

r ̸= s
mod p

r ̸≡ s mod p

We know, r − s ≡ a(k − ℓ) mod p . Since a ̸= 0 (from the definition of Hpm), since a ̸≡ 0 mod p (as
a ∈ [1, p− 1]), since k − ℓ ̸≡ 0 mod p (as every key k ∈ [0, p− 1]), and since their product must also be
nonzero modulo p, r − s ̸≡ 0 mod p. Since p is a prime, this implies, r ̸≡ s mod p.

• Lemma 2: For (k, ℓ) with k ̸= ℓ, if (a, b) is chosen uniformly at random from [1, p− 1]× [0, p− 1], then
the resulting pair (r, s) is equally likely to be any pair of distinct values modulo p.

fixed (k, ℓ)

k ̸= ℓ

(a, b) with a and b

any (r, s) pair is equi likely

r ̸= s
mod p

chosen uniformly at random

r ̸≡ s mod p

Since r = (ak + b) mod p and s = (aℓ+ b) mod p,
a = (r − s)((k − ℓ)−1 mod p) mod p, and
b = (r − ak) mod p.

From these, we can find a and b, given r and s. Hence, each of the possible p(p− 1) choices for the pair
(a, b) yields a different resulting pair (r, s) with r ̸= s.

Since there are only p(p − 1) possible pairs (r, s) with r ̸= s (from Lemma 1), there is a one-to-one
correspondance between pairs (a, b) and pairs (r, s) with r ̸≡ s mod p.

Thus, for any given pair of inputs k and ℓ, if we pick (a, b) uniformly at random from [1, p−1]× [0, p−1],
the pair (r, s) is equally likely to be any pair with r ̸≡ s mod p.

Choosing tuple (a, b) uniformly at random from any of p(p− 1) number of tuples,
pr(r ̸= s) = 1

p(p−1) . ——— (A)

• Theorem: Assuming every key k ∈ [0, p− 1],
Hpm = {hab(k) = ((ak + b) mod p) mod m : a ∈ [1, p− 1], b ∈ [0, p− 1], for a prime p > m}
is a 2-universal hash family.

[Here, choosing h ∈ Hpm uniformly at random is equivalent to choosing a and b uniformly at random respectively from [1, p−1] and [0, p−1].

Significantly, given the universe and the hash table are fixed, to save any function from Hpm, one needs to store only a and b.]

4

(r, s)

r ̸= s
mod m

r ̸≡ s mod p

(r′ = r mod m, s′ = s mod m)

with pr(r′ ≡ s′ mod m) ≤ 1
m

For k ̸= ℓ, it is immediate that pr(hab(k) = hab(ℓ)) = pr(r ≡ s mod m).

From (A), we know pr(r ̸= s) is 1
p(p−1) ; leading to,

pr(hab(k) = hab(ℓ)) =
1

p(p−1) · |{(r, s) : r ̸= s and r ≡ s mod m}|.

For a given value of r, of the p−1 possible remaining values for s, the number of values s such that s ̸= r
and s ≡ r mod m is at most ⌈ pm⌉ − 1 ≤ (p+m−1

m)− 1 = p−1
m .

Since r can assume p number of values, pr(hab(k) = hab(ℓ)) ≤ 1
p(p−1) ·

p(p−1)
m = 1

m .

References:

- Randomized Algorithms by R. Motawani and P. Raghavan. [Sections 7.1-7.2 and 7.4-7.6.]

- Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Third Edition.
[pg 267-268]

5

