Analysis of disjoint-set forest with union by rank and path compression R. Inkulu

* Here we consider the disjoint-set forest with union by rank and path compression heuristics. We prove the
amortized time complexity of m number of make-set, union, find-set operations, in which n are make-set
operations, on an initially empty data strcture is O(m1g* n).

* The rank of any node v of a disjoint-set forest is an upper bound on the height of v. For the sake of
completeness, the pseudocode from [CLRS] is listed at the end of this note. The following obvious
properties are derived from the pseudocode:

None of the make-set, union, and find-set operations cause the rank of any node to decrease.
Only the link operation could change the rank of a node.

If any node v becomes a child of another node, then onwards, rank of v won’t change. Hence, only
ranks of tree roots could be modified by the link operation.

The link operation increases the rank of 7'.root by at most one. This increase is exactly one whenever
another tree 7", whose root’s rank equal to T.root, is linked as a child of 7”s root.

For any node v, the ranks of nodes that occur along the simple path from v to root strictly increase.

A node’s parent may change or the parent’s rank may change: the former happens via a path com-
pression whereas the latter occurs when the parent is a root and its rank got increased via a link
operation.

Each union operation instantiates two find-set operations and at most one link operation. Hence, m
make-set, union, and find-set operations are effectively O(m) make-set, link, and find-set operations.

* Lemma 1: For any tree root v, the number of nodes in 7T}, is lower bounded by 2?7

Proof is by induction on the number of link operations.

As part of induction step, in linking a tree rooted at v’ as a child of a tree rooted at v, there are two cases to consider: v’.rank < v.rank

and v’.rank = v.rank.

Lemma 2: If x is a non-root node in a tree rooted at v when v.rank is set to r, then from there on, x can
never be in a tree whose root’s rank gets set to r.

If v is linked as a child of another root, then new root’s rank is either already greater than r or is equal to r 4 1 after linking.

When some other tree’s root is linked as a child of v, either v.rank remains same or it increases by one. In the former case, the root of
x does not change, whereas in the latter, the root’s rank is greater than 7.

That is, except for v, no root v’ exists such that x is a descendent of v’ and the rank of v’ is 7.

Theorem 1: In executing O(m) make-set, link, and find-set operations, in which n are make-set opera-
tions, for any non-negative integer r, there are at most 5 nodes of rank r.

Suppose there are greater than 2% nodes of rank r. Then, from Lemma 1 and Lemma 2, the total number of nodes in the disjoint-set

forest is at least (> 43 )(> 27), which is strictly greater than 7.

Corollary: The rank of any node is at most |lgn|.

Substituting 7’ > |lgn| in Theorem 1, the number of nodes of rank 7’ is strictly less than 1.


http://fac.iitg.ac.in/rinkulu/

min{i > 0:1gW(n) <1} ifn > 1,

e The iterated logarithm function, lg* n = )
0 otherwise.

This is a very slowly growing function after the inverse Ackermann function.

For any non-negative integer r, r is said to be in block-i whenever 1g* » = i. A node v is in block-i if the
rank of v is in block-i. We say the block id of block-i is i. Since node ranks are integers in [0, |lgn|],
block id’s are integers in [0, (1g* n) — 1].

* It is immediate, n make-set operations together take O(n) time, and the O(m) link operations together
take O(m) time. (la)

The find-set is essentially a find-path together with path compression. Since the time for path compression
can be charged to number of nodes visited in a find-path, the time complexity of a find-set operation is the
number of nodes visited in the corresponding find-path. To analyze the amortized time complexity of all
the find-paths among O(m) operations, we categorize nodes along any find-path P:

(i) root and its child on P (these are the nodes whose parents won’t change due to a find-path),

(ii) every node v on P whose parent belongs to a different block to v, and

(iii) every node v on P whose parent belongs to the same block as v.
Since there are O(m) find-paths and each such path has at most two nodes of type-(i), the amortized cost
of accessing all type-(i) nodes together is O(m). (1b)

Since block ids are in [0, (Ig" n) — 1] and since nodes of ranks along any find-path increase, there are at
most 1g* n nodes of type-(ii) along any find-path. Since there are O(m) find-paths, the amortized cost of
accessing all type-(ii) nodes together is O(m1g* n). (1¢)

From here on, we focus on upper bounding the total number of type-(iii) nodes visited due to O(m)
find-path operations.

* Once v is determined to be a type-(ii) node, then it continues to be a type-(ii) node in subsequent find-
paths as well. This is due to v’s parent’s rank would either remains same or increases; in both the cases,
v’s parent is in a different block to v.

Indeed, for a node v with its rank belonging to block-¢, the worst case arises when the following two
events occur alternately: a find-path on v and linking root of the tree in which v resides as a child of
another root. Again, in the worst case, with each such find-path on v, v’s parent’s rank could increase.
Since v’s parent’s ranks strictly increase, eventually, the rank of parent of v could belong to a block that
is different from the block to which v belongs. From the definition of type-(ii) nodes, when this happens,
v becomes a node of type-(ii).

Since the number of type-(ii) nodes is upper bounded, it suffices to account for how many times any
type-(iii) node v could be visited among O(m) find-paths before v becomes a type-(ii) node.

* The number of type-(iii) nodes when all the O(m) find-paths with n make-sets and O(m) link operations
considered equals to Zglzgo -1 (number of nodes whose ranks are in block-7) * (for any node v in block-z,
maximum number of times v’s parent’s rank is incremented by one while v’s parent’s rank continues to

lie in block-7). )




Let minr; be the minimum rank possible in block-i. Also, let maxr; be the maximum rank possible in
block-i. From Theorem 1, the first term of (2) is at most Qm?mi + 2,,1”?” T+ -+ gmaey < zmi,ﬁrl =
n

. The last equality is due to the following: since maximum rank possible in any block is a tower of
2s, 2MATTi-1 = maxr;; however, minr; = maxr;_1 + 1.

The second term of (2) is maximized if v has rank minr; and its parents’ ranks increase amid find-paths
in increments of one, from menr; + 1 to maxr;.

Hence, (2) is at most Zglzgo n)_l( " — % (maxr; — (minr; + 1) + 1)) = O(nlg* n).

maxr;

* Combining (1a), (1b), (1c), with (2), the amortized time complexity of m make-set, union, find-set oper-
ations in which n are make-set operations is O(m1g* n).

References:
Set Merging Algorithms. J. E. Hopcroft and J. D. Ullman. SIAM Journal on Computing, Vol. 2(4): 294-303,
1973. (This note only covers pages 7-8 of this paper.)



Appendix

make-set(x):
set x as x’s parent
initialize x.rank to 0

union(x’, y’):
if ((z + find-set(2'))! = (y + find-set(y’)) then
‘ link(z,y)

X S N R W N =

link(z,y):
if x.rank < y.rank then
| link 2 as a child of y
else
link y as a child of x
if x.rank is equal to y.rank then
‘ increase the rank of y by one

N A W N =

find-set(x):

foreach node x' on the simple path from x to root v do
/lvisiting nodes along this path is called a find-path on x
make x’ as a child of v //called path compression

end




