
Analysis of disjoint-set forest with union by rank and path compression R. Inkulu

• Here we consider the disjoint-set forest with union by rank and path compression heuristics. We prove the
amortized time complexity of m number of make-set, union, find-set operations, in which n are make-set
operations, on an initially empty data strcture is O(m lg∗ n).

• The rank of any node v of a disjoint-set forest is an upper bound on the height of v. For the sake of
completeness, the pseudocode from [CLRS] is listed at the end of this note. The following obvious
properties are derived from the pseudocode:

– None of the make-set, union, and find-set operations cause the rank of any node to decrease.

Only the link operation could change the rank of a node.

– If any node v becomes a child of another node, then onwards, rank of v won’t change. Hence, only
ranks of tree roots could be modified by the link operation.

– The link operation increases the rank of T.root by at most one. This increase is exactly one whenever
another tree T ′, whose root’s rank equal to T.root, is linked as a child of T ’s root.

– For any node v, the ranks of nodes that occur along the simple path from v to root strictly increase.

– A node’s parent may change or the parent’s rank may change: the former happens via a path com-
pression whereas the latter occurs when the parent is a root and its rank got increased via a link
operation.

– Each union operation instantiates two find-set operations and at most one link operation. Hence, m
make-set, union, and find-set operations are effectively O(m) make-set, link, and find-set operations.

• Lemma 1: For any tree root v, the number of nodes in Tv is lower bounded by 2v.rank.

- Proof is by induction on the number of link operations.

As part of induction step, in linking a tree rooted at v′ as a child of a tree rooted at v, there are two cases to consider: v′.rank < v.rank

and v′.rank = v.rank.

Lemma 2: If x is a non-root node in a tree rooted at v when v.rank is set to r, then from there on, x can
never be in a tree whose root’s rank gets set to r.

- If v is linked as a child of another root, then new root’s rank is either already greater than r or is equal to r + 1 after linking.

When some other tree’s root is linked as a child of v, either v.rank remains same or it increases by one. In the former case, the root of
x does not change, whereas in the latter, the root’s rank is greater than r.

That is, except for v, no root v′ exists such that x is a descendent of v′ and the rank of v′ is r.

Theorem 1: In executing O(m) make-set, link, and find-set operations, in which n are make-set opera-
tions, for any non-negative integer r, there are at most n

2r nodes of rank r.

- Suppose there are greater than n
2r

nodes of rank r. Then, from Lemma 1 and Lemma 2, the total number of nodes in the disjoint-set

forest is at least (> n
2r

)(≥ 2r), which is strictly greater than n.

Corollary: The rank of any node is at most ⌊lg n⌋.

- Substituting r′ > ⌊lgn⌋ in Theorem 1, the number of nodes of rank r′ is strictly less than 1.

1

http://fac.iitg.ac.in/rinkulu/

• The iterated logarithm function, lg∗ n =

{
min{i ≥ 0 : lg(i)(n) ≤ 1} if n > 1,

0 otherwise.

This is a very slowly growing function after the inverse Ackermann function.

For any non-negative integer r, r is said to be in block-i whenever lg∗ r = i. A node v is in block-i if the
rank of v is in block-i. We say the block id of block-i is i. Since node ranks are integers in [0, ⌊lg n⌋],
block id’s are integers in [0, (lg∗ n)− 1].

• It is immediate, n make-set operations together take O(n) time, and the O(m) link operations together
take O(m) time. ——— (1a)

The find-set is essentially a find-path together with path compression. Since the time for path compression
can be charged to number of nodes visited in a find-path, the time complexity of a find-set operation is the
number of nodes visited in the corresponding find-path. To analyze the amortized time complexity of all
the find-paths among O(m) operations, we categorize nodes along any find-path P :

(i) root and its child on P (these are the nodes whose parents won’t change due to a find-path),

(ii) every node v on P whose parent belongs to a different block to v, and

(iii) every node v on P whose parent belongs to the same block as v.

Since there are O(m) find-paths and each such path has at most two nodes of type-(i), the amortized cost
of accessing all type-(i) nodes together is O(m). ——— (1b)

Since block ids are in [0, (lg∗ n) − 1] and since nodes of ranks along any find-path increase, there are at
most lg∗ n nodes of type-(ii) along any find-path. Since there are O(m) find-paths, the amortized cost of
accessing all type-(ii) nodes together is O(m lg∗ n). ——— (1c)

From here on, we focus on upper bounding the total number of type-(iii) nodes visited due to O(m)
find-path operations.

• Once v is determined to be a type-(ii) node, then it continues to be a type-(ii) node in subsequent find-
paths as well. This is due to v’s parent’s rank would either remains same or increases; in both the cases,
v’s parent is in a different block to v.

Indeed, for a node v with its rank belonging to block-i, the worst case arises when the following two
events occur alternately: a find-path on v and linking root of the tree in which v resides as a child of
another root. Again, in the worst case, with each such find-path on v, v’s parent’s rank could increase.
Since v’s parent’s ranks strictly increase, eventually, the rank of parent of v could belong to a block that
is different from the block to which v belongs. From the definition of type-(ii) nodes, when this happens,
v becomes a node of type-(ii).

Since the number of type-(ii) nodes is upper bounded, it suffices to account for how many times any
type-(iii) node v could be visited among O(m) find-paths before v becomes a type-(ii) node.

• The number of type-(iii) nodes when all the O(m) find-paths with n make-sets and O(m) link operations
considered equals to

∑(lg∗ n)−1
i=0 (number of nodes whose ranks are in block-i) ∗ (for any node v in block-i,

maximum number of times v’s parent’s rank is incremented by one while v’s parent’s rank continues to
lie in block-i). ——— (2)

2

Let minri be the minimum rank possible in block-i. Also, let maxri be the maximum rank possible in
block-i. From Theorem 1, the first term of (2) is at most n

2minri
+ n

2minri+1 + . . .+ n
2maxri < n

2minri−1 =
n

maxri
. The last equality is due to the following: since maximum rank possible in any block is a tower of

2s, 2maxri−1 = maxri; however, minri = maxri−1 + 1.

The second term of (2) is maximized if v has rank minri and its parents’ ranks increase amid find-paths
in increments of one, from minri + 1 to maxri.

Hence, (2) is at most
∑(lg∗ n)−1

i=0 (n
maxri

∗ (maxri − (minri + 1) + 1)) = O(n lg∗ n).

• Combining (1a), (1b), (1c), with (2), the amortized time complexity of m make-set, union, find-set oper-
ations in which n are make-set operations is O(m lg∗ n).

References:
Set Merging Algorithms. J. E. Hopcroft and J. D. Ullman. SIAM Journal on Computing, Vol. 2(4): 294-303,
1973. (This note only covers pages 7-8 of this paper.)

3

Appendix

1 make-set(x):
2 set x as x’s parent
3 initialize x.rank to 0

1 union(x’, y’):
2 if ((x← find-set(x′))! = (y ← find-set(y′)) then
3 link(x, y)

1 link(x, y):
2 if x.rank < y.rank then
3 link x as a child of y
4 else
5 link y as a child of x
6 if x.rank is equal to y.rank then
7 increase the rank of y by one

1 find-set(x):
2 foreach node x′ on the simple path from x to root v do
3 //visiting nodes along this path is called a find-path on x
4 make x′ as a child of v //called path compression
5 end

4

