- Here we consider the disjoint-set forest with union by rank and path compression heuristics. We prove the amortized time complexity of m number of make-set, union, find-set operations, in which n are make-set operations, on an initially empty data strcture is $O\left(m \lg ^{*} n\right)$.
- The rank of any node v of a disjoint-set forest is an upper bound on the height of v. For the sake of completeness, the pseudocode from [CLRS] is listed at the end of this note. The following obvious properties are derived from the pseudocode:
- None of the make-set, union, and find-set operations cause the rank of any node to decrease.

Only the link operation could change the rank of a node.

- If any node v becomes a child of another node, then onwards, rank of v won't change. Hence, only ranks of tree roots could be modified by the link operation.
- The link operation increases the rank of T.root by at most one. This increase is exactly one whenever another tree T^{\prime}, whose root's rank equal to T.root, is linked as a child of T 's root.
- For any node v, the ranks of nodes that occur along the simple path from v to root strictly increase.
- A node's parent may change or the parent's rank may change: the former happens via a path compression whereas the latter occurs when the parent is a root and its rank got increased via a link operation.
- Each union operation instantiates two find-set operations and at most one link operation. Hence, m make-set, union, and find-set operations are effectively $O(m)$ make-set, link, and find-set operations.
- Lemma 1: For any tree root v, the number of nodes in T_{v} is lower bounded by $2^{v . r a n k}$.
- Proof is by induction on the number of link operations.

As part of induction step, in linking a tree rooted at v^{\prime} as a child of a tree rooted at v, there are two cases to consider: $v^{\prime} \cdot \operatorname{rank}<v . r a n k$ and $v^{\prime} \cdot r a n k=v . r a n k$.

Lemma 2: If x is a non-root node in a tree rooted at v when $v . r a n k$ is set to r, then from there on, x can never be in a tree whose root's rank gets set to r.

[^0]Theorem 1: In executing $O(m)$ make-set, link, and find-set operations, in which n are make-set operations, for any non-negative integer r, there are at most $\frac{n}{2^{r}}$ nodes of rank r.

- Suppose there are greater than $\frac{n}{2^{r}}$ nodes of rank r. Then, from Lemma 1 and Lemma 2, the total number of nodes in the disjoint-set forest is at least $\left(>\frac{n}{2^{r}}\right)\left(\geq 2^{r}\right)$, which is strictly greater than n.

Corollary: The rank of any node is at most $\lfloor\lg n\rfloor$.

- Substituting $r^{\prime}>\lfloor\lg n\rfloor$ in Theorem 1 , the number of nodes of rank r^{\prime} is strictly less than 1 .
- The iterated logarithm function, $\lg ^{*} n=\left\{\begin{array}{l}\min \left\{i \geq 0: \lg ^{(i)}(n) \leq 1\right\} \text { if } n>1, \\ 0 \text { otherwise. }\end{array}\right.$

This is a very slowly growing function after the inverse Ackermann function.
For any non-negative integer r, r is said to be in block- i whenever $\lg ^{*} r=i$. A node v is in block- i if the rank of v is in block- i. We say the block id of block- i is i. Since node ranks are integers in $[0,\lfloor\lg n\rfloor]$, block id's are integers in $\left[0,\left(\lg ^{*} n\right)-1\right]$.

- It is immediate, n make-set operations together take $O(n)$ time, and the $O(m)$ link operations together take $O(m)$ time. - (1a)

The find-set is essentially a find-path together with path compression. Since the time for path compression can be charged to number of nodes visited in a find-path, the time complexity of a find-set operation is the number of nodes visited in the corresponding find-path. To analyze the amortized time complexity of all the find-paths among $O(m)$ operations, we categorize nodes along any find-path P :
(i) root and its child on P (these are the nodes whose parents won't change due to a find-path),
(ii) every node v on P whose parent belongs to a different block to v, and
(iii) every node v on P whose parent belongs to the same block as v.

Since there are $O(m)$ find-paths and each such path has at most two nodes of type-(i), the amortized cost of accessing all type-(i) nodes together is $O(m)$.
Since block ids are in $\left[0,\left(\mathrm{lg}^{*} n\right)-1\right]$ and since nodes of ranks along any find-path increase, there are at most $\lg ^{*} n$ nodes of type-(ii) along any find-path. Since there are $O(m)$ find-paths, the amortized cost of accessing all type-(ii) nodes together is $O\left(m \lg ^{*} n\right)$. -_ (1c)
From here on, we focus on upper bounding the total number of type-(iii) nodes visited due to $O(\mathrm{~m})$ find-path operations.

- Once v is determined to be a type-(ii) node, then it continues to be a type-(ii) node in subsequent findpaths as well. This is due to v 's parent's rank would either remains same or increases; in both the cases, v 's parent is in a different block to v.

Indeed, for a node v with its rank belonging to block- i, the worst case arises when the following two events occur alternately: a find-path on v and linking root of the tree in which v resides as a child of another root. Again, in the worst case, with each such find-path on v, v 's parent's rank could increase. Since v 's parent's ranks strictly increase, eventually, the rank of parent of v could belong to a block that is different from the block to which v belongs. From the definition of type-(ii) nodes, when this happens, v becomes a node of type-(ii).

Since the number of type-(ii) nodes is upper bounded, it suffices to account for how many times any type-(iii) node v could be visited among $O(m)$ find-paths before v becomes a type-(ii) node.

- The number of type-(iii) nodes when all the $O(m)$ find-paths with n make-sets and $O(m)$ link operations considered equals to $\sum_{i=0}^{\left(\lg ^{*} n\right)-1}$ (number of nodes whose ranks are in block- i) $*$ (for any node v in block- i, maximum number of times v 's parent's rank is incremented by one while v 's parent's rank continues to lie in block- i). - (2)

Let minr $_{i}$ be the minimum rank possible in block- i. Also, let maxr $_{i}$ be the maximum rank possible in block- i. From Theorem 1, the first term of (2) is at most $\frac{n}{2^{\min r_{i}}}+\frac{n}{2^{\min r_{i}+1}}+\ldots+\frac{n}{2^{\operatorname{maxr}} i_{i}}<\frac{n}{2^{m i n r_{i}-1}}=$ $\frac{n}{\text { maxr }_{i}}$. The last equality is due to the following: since maximum rank possible in any block is a tower of $2 \mathrm{~s}, 2^{\text {maxr }_{i-1}}=$ maxr $_{i}$; however, minr $_{i}=\operatorname{maxr}_{i-1}+1$.

The second term of (2) is maximized if v has rank minr $_{i}$ and its parents' ranks increase amid find-paths in increments of one, from minr $_{i}+1$ to maxr $_{i}$.

Hence, (2) is at most $\sum_{i=0}^{\left(\lg ^{*} n\right)-1}\left(\frac{n}{\operatorname{maxr}_{i}} *\left(\operatorname{maxr}_{i}-\left(\operatorname{minr}_{i}+1\right)+1\right)\right)=O\left(n \lg ^{*} n\right)$.

- Combining (1a), (1b), (1c), with (2), the amortized time complexity of m make-set, union, find-set operations in which n are make-set operations is $O\left(m \lg ^{*} n\right)$.

References:

Set Merging Algorithms. J. E. Hopcroft and J. D. Ullman. SIAM Journal on Computing, Vol. 2(4): 294-303, 1973. (This note only covers pages 7-8 of this paper.)

Appendix

1 make-set (x) :
2 set x as x 's parent
3 initialize x.rank to 0

```
1 union( \(\left.\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\) :
2 if \(\left(\left(x \leftarrow \operatorname{find}-\operatorname{set}\left(x^{\prime}\right)\right)!=\left(y \leftarrow f \operatorname{find}-\operatorname{set}\left(y^{\prime}\right)\right)\right.\) then
\(3 \mid \operatorname{link}(x, y)\)
```

```
\(1 \operatorname{link}(x, y)\) :
2 if x.rank \(<\) y.rank then
        link \(x\) as a child of \(y\)
    else
        link \(y\) as a child of \(x\)
        if \(x\).rank is equal to \(y\).rank then
            increase the rank of \(y\) by one
```

[^1]
[^0]: - If v is linked as a child of another root, then new root's rank is either already greater than r or is equal to $r+1$ after linking.

 When some other tree's root is linked as a child of v, either v.rank remains same or it increases by one. In the former case, the root of x does not change, whereas in the latter, the root's rank is greater than r.

 That is, except for v, no root v^{\prime} exists such that x is a descendent of v^{\prime} and the rank of v^{\prime} is r.

[^1]: find-set (x) :
 foreach node x^{\prime} on the simple path from x to root v do
 $/ / v i s i t i n g ~ n o d e s ~ a l o n g ~ t h i s ~ p a t h ~ i s ~ c a l l e d ~ a ~ f i n d-p a t h ~ o n ~ x ~$
 make x^{\prime} as a child of $v \quad / /$ called path compression
 end

