
Elementary Discrete Probability R. Inkulu

Events and probability distribution

• An experiment is a procedure that yields one of a given set of possible outcomes. The sample space of an
experiment is the set of possible outcomes. Each outcome in a sample space is also known as a sample
point. A sample space is called discrete if it contains finite or countably infinite number of sample points.
The discrete probability studies the probability theory when the sample space is discrete.

• Any subset of the sample space is known as an event. Each sample point is a simple (indecomposable)
event; otherwise, it is a compound (decomposable) event. Further, an event that has no sample points is
denoted by ϕ.

For any two events E and F of a sample space S, event E ∪ F consists of all the sample points that are
either in E or in F , event E ∩ F consists of all the sample points that are both in E and in F , event E
consists of all sample points that are part of S but not in E, E ⊆ F denotes that all sample points of E
are included in F , etc.

• For a discrete sample space S, consider any function p : S → [0, 1] such that
∑

s∈S p(s) = 1. Then p(s)
is said to be the probability of sample point s. The function p is called a probability distribution over the
sample spce S.

The probability of any event E is defined as
∑

sample point s∈E p(s). And, the probability of an empty event,
p(ϕ), is equal to zero.

• If S is a finite nonempty sample space of equally likely sample points, and E is an event, that is a subset
of S, then the probability of E is p(E) = |E|

|S| . The uniform distribution assigns the probability 1
|S| to each

outcome in the sample space S. Indeed, when the probability of choosing any element from a sample
space S is equal to the probability of choosing any other element of S, then the elements are said to be
chosen uniformly at random.

* p(E) = 1− p(E).

- proof: since |E| = |S| − |E|, p(E) =
|S|−|E|

|S|

- The odds ratio of any event A is p(A)

p(A)
, that is, p(A)

1−p(A) .

* If E ⊆ F then p(E) ≤ p(F ).

* Inclusion-exclusion principle: p(E1 ∪ E2 ∪ . . . ∪ En) =
∑n

i=1 p(Ei) −
∑

i1<i2
p(Ei1 ∩ Ei2) + . . . +

(−1)r+1
∑

i1<i2<...<ir
p(Ei1 ∩ Ei2 ∩ . . . ∩ Eir) + . . .+ (−1)n+1p(E1 ∩ E2 ∩ . . . ∩ En).

* Union bound (a.k.a., Boole’s inequality): p(
⋃

i≥1Ei) ≤
∑

i≥1 p(Ei).

- proof: from the inclusion-exclusion principle

• Two events E1, E2 are mutually exclusive (a.k.a., disjoint) if they cannot occur at the same time, that is,
p(E1 ∩ E2) = 0.

For any finite or countably infinite sequence of pairwise mutually exclusive events E1, E2, E3, . . ., the
union bound reduces to p(

⋃
i≥1Ei) =

∑
i≥1 p(Ei).
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• Typical pipeline of problem solving: find the sample space (tree diagrams could help in understanding
the sample space), define events of interest, associate probabilities to sample points, and compute event
probabilities.

Conditional probability

• Let H be an event with a positive probability. For two arbitrary events A and H , the conditional proba-
bility of A on the hypothesis H is denoted by p(A|H), and is equal to p(A∩H)

p(H) . That is, H becomes the
new sample space with probability of each sample point in H is associated to probability proportional to
probability of that sample point in the original sample space, and the sum of new probabilities associated
to sample points in H is equal to one.

The conditional probability p(B|A) is called a posteriori if event B precedes event A in time. Otherwise,
it is called a priori.

* Product rule of conditional probability: p(A ∩H) = p(A|H)p(H).

Generalizing the same yields, p(E1 ∩ E2 ∩ . . . ∩ En) = p(E1|E2 ∩ E3 ∩ . . . ∩ En)p(E2|E3 ∩ . . . ∩
En) . . . p(En).

* p((A ∪B)|H) = p(A|H) + p(B|H)− p((A ∩B)|H).

* The law of total probability: Let H1, . . . ,Hn be a set of mutually exclusive events that partition the sample
space, then for any arbitrary event A, p(A) =

∑n
j=1 p(A|Hj)p(Hj).

- proof: since p(A) =
∑n

j=1 p(A ∩Hj)

* Bayes’ rule: Let H1, . . . ,Hn be a set of mutually exclusive events that partition the sample space, then
for any arbitrary event A. Then, p(Hk|A) = p(A|Hk)p(Hk)∑

j p(A|Hj)p(Hj)
.

- proof: since p(Hk|A)p(A) = p(A|Hk)p(Hk), and due to law of total probability

- Corollary: Suppose that E and F are events from a sample space S such that p(E) ̸= 0 and p(F ) ̸= 0.
Then, p(F |E) = p(E|F )p(F )

p(E|F )p(F )+p(E|F )p(F )
.

• Let S be the set of balls in a bin, and for any ball b ∈ S let p(b) be the probability of selecting b from S
so that

∑
b∈S p(b) = 1. A random sample S′ is a subset of S, wherein each ball in S′ is chosen according

to probability distribution function p. When the ball selected is not returned to the bin before the next ball
is selected then this sampling is termed as sampling without replacement. In this case, the probability of
selecting a ball from the bin changes from one iteration to another. On the other hand, if the ball selected is
returned to the bin before the next ball is selected then this sampling is called sampling with replacement.
When compared with sampling without replacement, sampling with replacement is often simpler to code
and the effect on the probability of making an error is almost negligible, hence the former is a desirable
alternative to the latter.

• Two events A and H are said to be stochastically independent (or, independent) whenever p(A ∩ H) =
p(A)p(H). For two independent events A and H with p(H) ̸= 0, it is immediate that p(A|H) = p(A). In
other words, A does not depend on the occurance of hypothesis H . The definition of independent events
is accepted even when p(H) = 0, however, in this case, p(A|H) is not defined.
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If A and H are independent events, then so are A and H , H and A, and A and H .

- proof: immediate

We know, for any two disjoint events A and B, p(A ∩ B) = 0. However, p(A)p(B) = 0 only if either
p(A) = 0 or p(B) = 0; that is, two disjoint events are not independent unless one of them has probability
zero.

• The set S of events are said to be mutually independent whenever for every subset E′
1, E

′
2, . . . , E

′
m (with

2 ≤ m ≤ n) of events from S, p(E′
1, E

′
2, . . . , E

′
m) = p(E′

1)p(E
′
2) . . . p(E

′
m). Intuitively, the probability

of each event in S is the same no matter which other events has occurred. For any mutually independent
events E1, E2, and E3, the following are mutually independent as well: E1 ∪ E2, E3; E1 ∪ E3, E2;
E2 ∪ E3, E1.

The events E1, E2, . . . , En are said to be k-wise independent whenever every k-set of these events is
mutually independent.
A set S, with |S| > 2, of events are mutually independent ⇒ events in S are k-wise independent for any
fixed integer k ∈ [2, |S|].
Whereas, a set S, with |S| > 2, of events are k-wise independent for some fixed integer k ∈ [2, |S|] ̸⇒
events in S are mutually independent.

Random variables

• A random variable is a (total) function from the sample space of an experiment to the set of real numbers.
That is, a random variable assigns a real number to each possible outcome. (Significantly, the random
variable is a function, it is not a variable, and it is not random as well!) A discrete random variable is a
random variable that takes on only a finite or countably infinite number of values.

Let X be a random variable from the sample space S, and let x1, x2, . . . , be the values that it assumes.
The aggregate of all sample points on which X assumes a fixed value xj forms the event that X = xj ,
and the probability of this event is denoted by p(X = xj). The function p(X = xj) =

∑
s∈S,X(s)=r p(s)

is called the probability distribution of random variable X or the probability mass function of X . Clearly,
∀j p(X = xj) ≥ 0 and

∑
j p(X = xj) = 1. Typically, probabilities are associated directly to the range

of X .

• For an event that either happens or does not happen, the former with probability p and the latter with
probability 1 − p, an indicator random variable (a.k.a., Bernoulli random variable) is a random variable
that is equal to 1 if the event happens and 0 otherwise. That is, an indicator random variable maps every
outcome of the sample space to {0, 1}.

• Consider two random variables X and Y defined on the same sample space, and denote the values which
they assume, respectively by x1, x2, . . . , and y1, y2, . . .. The aggregate of sample points in which the two
conditions X = xj and Y = yk are satisfied forms an event whose probability is denoted by p(X =
xj , Y = yk). The function ∀j,k p(X = xj , Y = yk) is called the joint probability distribution of X and
Y . (This defintion can be extended to more than two random variables by obvious means.)

Clearly, ∀j,k p(X = xj , Y = yk) ≥ 0, and
∑

j,k p(X = xj , Y = yk) = 1.
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The p(X = xj) (resp., p(Y = yk)) is called the marginal probability of X , to denote that more than one
random variable is involved: For every fixed j,

∑
k p(X = xj , Y = yk) = p(X = xj). Similarly, for

every fixed k,
∑

j p(X = xj , Y = yk) = p(Y = yk).

• Let X = xj be an event with positive probability. The conditional probability of event Y = yk given
X = xj is denoted by p(Y = yk|X = xj), and is equal to p(Y=yk∩X=xj)

p(X=xj)
.

Two random variables X and Y are said to be (stochastically) independent random variables whenever
∀j,k p(X = xj ∩ Y = yk) = p(X = xj)Y (Y = yk).

A a set of random variables X1, . . . , Xn are said to be pairwise independent set of random variables
whenever for any pair i, j and for any real numbers α and β, p((Xi = α) ∩ (Xj = β)) = p(Xi =
α)p(Xj = β).

A collection of random variables are said to be independent and identically distributed (i.i.d.) whenever
those random variables are independent and any two random variables in that collection has the same
probability distribution.

• If X,Y, Z, . . . are random variables defined on the same sample space, then any function f(X,Y, Z, . . .)
is again a random variable. Its distribution can be obtained from the joint distribution of X,Y, Z, . . ..

Expectation of a random variable

• The expected value, also called the expectation or mean, of a random variable X on the sample space S is
equal to E(X) =

∑
s∈S X(s)p(s) =

∑
i∈X(s) ip(X = i). (We assume this series converges, and hence

X has finite expectation.)

• If X is a random variable with a uniform distribution on {a1, a2, . . . , an} then E(X) = a1+a2+...+an
n .

The expected value of an indicator random variable I for an event is equal to the probability p of that
event.

- proof: E[I] = 0 · p(I = 0) + 1 · p(I = 1) = p(I = 1) = p

Let X be a discrete random variable that takes on only nonnegative integer varlues. Then, E[X] =∑∞
i=1 p(X ≥ i).

- proof:
∑∞

i=1 p(X ≥ i) =
∑∞

i=1

∑∞
j=i p(X = j) =

∑∞
j=1

∑j
i=1 p(X = j) =

∑∞
j=1 jp(X = j) = E[X]

• Let X,X1, X2, . . . , Xn be random variables on S. Then, the linearity of expectations says the following:

(a) E(X1 +X2 + . . .+Xn) = E(X1) + E(X2) + . . .+ E(Xn),

- proof: generalize the following, E(X1 +X2) =
∑

s∈S p(s)(X1(s) +X2(s)) =
∑

s∈S p(s)X1(s) +
∑

s∈S p(s)X2(s)

(b) E(aX + b) = aE(X) + b, and

- proof: E(aX + b) =
∑

s∈S p(s)(aX(s) + b) = a
∑

s∈S p(s)X(s) + b
∑

s∈S p(s) = aE(X) + b

(c) E(
∑n

i=1 aiXi) =
∑n

i=1 aiE(Xi) for constants a1, a2, . . . , an ∈ R.

- proof: from the proofs of above two propositions
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• Let X,Y be independent random variables. Also, let f, g be any functions. Then, f(X) and g(Y ) are
independent.

- proof: p((f(X) = a)(g(Y ) = b)) = p((X ∈ f−1({a}))(Y ∈ g−1({b}))) = p(X ∈ f−1({a})p(Y ∈ g−1({b})) = p(f(X) =

a)p(g(Y ) = b)

• Let X,X1, X2, . . . , Xn be a collection of independent random variables defined on the sample space S.
Then, E[Πn

i=1Xi] = Πn
i=1E[Xi].

- proof: for pairwise independent random variables X and Y ,

E[X · Y ] =
∑

i

∑
j(i · j) · p((X = i) ∩ (Y = j)) =

∑
i

∑
j(i · j) · p(X = i) · p(Y = j) = (

∑
i i · p(X = i))(

∑
j j · p(Y =

j)) = E[X] · E[Y ].

• A weaker version of Jensen’s inequality: E[X2] ≥ (E[X])2.

- proof: consider the random variable Y = (X − E[X])2; since Y is nonnegative, 0 ≤ E[Y ]

Jensen’s inequality: For a convex function f , E[f(X)] ≥ f(E[X]).

- Two definitions for a function to be a convex:
A function f : R → R is convex if, for any x1, x2 and 0 ≤ λ ≤ 1, f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).
If f is a twice differentiable function, then f is convex iff f ′′(x) ≥ 0.

- proof: Assuming f has a Taylor expansion and µ = E[X], there is a value c such that

f(x) = f(µ) + f ′(µ)(x− µ) +
f ′′(c)(x−µ)2

2
≥ f(µ) + f ′(µ)(x− µ), since f ′′(c) > 0 by convexity.

Then, E[f(X)] ≥ E[f(µ) + f ′(µ)(X − µ)] = E[f(µ)] + f ′(µ)(E[X]− µ) = f(µ) = f(E[X]).

• The deviation of X at s ∈ S is X(s) − E(X). Let X be a random variable with probability distribution
{f(xj)}, and let r ≥ 0 be an integer. The rth moment of X (about the origin) is E(Xr), which is equal
to

∑
j x

r
jf(xj). (We assume E(Xr) exists.)

Let E(X) and E(X2) be the first and second moments of a random variable X . Then, the variance
(a.k.a., dispersion) of X , denoed by V ar[X] or σ2

X , is defined as E((X − E(X))2). This characterizes
how widely a random variable is distributed: small variance indicates large deviations of X from µ are
improbable; large variance indicates that not all values assumed by X lie near the mean.

The standard deviation of X , denoted by σX , is
√

V ar[X]. This measures how spread out the distribution
of X around its mean; useful as its units are the same as E(X).

A few properties of variance:

(a) V ar[X] = E[X2]− (E[X])2.

- proof: V ar[X] = E[(X−E[X])2] = E[X2−2XE[X]+E[X]2] = E[X2]−2E[XE[X]]+E[X]2 = E[X2]−2E[X]E[X]+

E[X]2 = E[X2]− (E[X])2.

(b) V ar[X + Y ] = V ar[X] + V ar[Y ] + 2E[(X − E[X])(Y − E[Y ])].

- proof: V ar[X +Y ] = E[(X +Y −E[X +Y ])2] = E[(X +Y −E[X]−E[Y ])2] = E[(X −E[X])2 +(Y −E[Y ])2 +2(X −
E[X])(Y − E[Y ])]

(c) V ar[aX + b] = a2V ar[X].

- proof: — homework —
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(d) Bienayme’s formula: If the Xjs are pairwise independent, then V ar[X1+X2+. . .+Xn] = V ar[X1]+
V ar[X2] + . . .+ V ar[Xn].

- proof:

we know V ar[X +Y ] = V ar[X] +V ar[Y ] + 2E[(X −E[X])(Y −E[Y ])] = E[(X −E[X])2] +E[(Y −E[Y ])2] + 2E[(X −
E[X])(Y − E[Y ])];

since X and Y are independent, X − E[X] and Y − E[Y ] are independent as well; hence, E[(X − E[X])(Y − E[Y ])] = E[X −
E[X]]E[Y − E[Y ]];

for any random variable Z, E[Z − E[Z]] = E[Z]− E[E[Z]] = 0;

therefore, V ar[X + Y ] = E[(X − E[X])2] + E[(Y − E[Y ])2] = V ar[X] + V ar[Y ]

• If X and Y are two random variables with joint distribution, the conditional expectation of Y for a given
X = xj , denoted by E(Y |X = xj), is

∑
yk∈range(Y ) ykp(Y = yk|X = xj). Essentially, the expression

E(Y |X) is a random variable f(X) that takes on the value E(Y |X = xj) when X = xj . As the
following law depicts, the conditional expectations are quite useful in dividing the expectation calculation
into simpler cases.

The law of total expectations: For any random variables X and Y ,
E(X) =

∑
y∈range(Y ) p(Y = y)E(X|Y = y).

- proof:
∑

y p(Y = y)E[X|Y = y] =
∑

y p(Y = y)
∑

x xp(X = x|Y = y) =
∑

x

∑
y xp(X = x|Y = y)p(Y = y) =∑

x

∑
y xp(X = x ∩ Y = y) =

∑
x xp(X = x) = E[X]

For any finite collection of discrete random variables X1, X2, . . . , Xn with finite expectations and for any
random variable Y , E[

∑n
i=1Xi|Y = y] =

∑n
i=1E[Xi|Y = y]. (That is, the linearity of expectations

extends to conditional expectations.)

- proof: — homework —

For random variables X and Y , E[X] = E[E[X|Y ]].

- proof: since E(X|Y ) is a random variable f(Y ) that takes on the value E(X|Y = y) when Y = y,

E[E[X|Y ]] =
∑

z∈range(Y ) E[X|Y = y]p(Y = y), which is equal to E[X] according to the law of total expectations.

Popular distributions

• Bernoulli distribution: Repeated independent trials are called Bernoulli trials if there are only two possible
outcomes (success, failure) for each trial and their probabilities, p and q respectively, remain the same
throughout the trials.

For a Bernoulli random variable X that has value 1 if the result is heads and 0 otherwise, E[X] = p and
V ar[X] = p(1− p).

- proof:

E[X] = p · 1 + (1− p) · 0 = p = p(X = 1)

V ar[X] = E[X2]− (E[X])2 = (02 · p(X = 0) + 12 · p(X = 1))− (p)2

A sequence of independent Bernoulli trials with success probability associated to each specific trial is
called a Poisson trial. This is different from the Poisson approximation/distribution, which is described
later.
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• Binomial distribution: The probability that n Bernoulli trials with probabilities p for success and q = 1−p
for failure result in k successes and n − k failures, denoted by b(k;n, p), is

(
n
k

)
pkqn−k. (This assumes

order of successes in n trials does not matter.)

Since
∑n

i=0 b(i;n, p) = 1, b(k;n, p) is a probability distribution.

For a binomial random variable X that has value i if there are i successes, E[X] = np and V ar[X] = npq.

- proof:

E[X] =
∑n

j=0 j
(n
j

)
pj(1 − p)n−j =

∑n
j=0 j

n!
j!(n−j)!

pj(1 − p)n−j =
∑n

j=1
(n−1)!

(j−1)!((n−1)−(j−1))!
pj−1(1 − p)(n−1)−(j−1)

= np
∑n−1

k=0
(n−1)!

k!((n−1)−k)!
pk(1− p)(n−1)−k = np

∑n−1
k=0

(n−1
k

)
pk(1− p)(n−1)−k = np

E[X2] =
∑n

j=0

(n
j

)
pj(1 − p)n−jj2 =

∑n
j=0

n!
(n−j)!j!

pj(1 − p)n−j((j2 − j) + j) =
∑n

j=0
n!(j2−j)
(n−j)!j!

pj(1 − p)n−j +∑n
j=0

n!j
(n−j)!j!

pj(1− p)n−j = n(n− 1)p2
∑n

j=2
(n−2)!

(n−j)!(j−2)!
pj−2(1− p)n−j + np

∑n
j=1

(n−1)!
(n−j)!(j−1)!

pj−1(1− p)n−j =

n(n− 1)p2 + np

V ar[X] = E[X2]− (E[X])2 = n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p)

• Poisson approximation to binomial distribution: Let Xn be a binomial random variable with parameters
n and p, where p is a function of n and limn→∞ np = λ is a constant that is independent of n. Then, for
any fixed k, limn→∞ p(Xn = k) = e−λλk

k! .

- proof:

p(Xn = k) =
(n
k

)
pk(1− p)n−k ≤ nk

k!
pk

(1−p)n

(1−p)k
≤ (np)k

k!
e−pn

1−pk
=

e−pn(np)k

k!
1

1−pk

p(Xn = k) =
(n
k

)
pk(1− p)n−k ≥ (n−k+1)k

k!
pk(1− p)n ≥ ((n−k+1)p)k

k!
e−pn(1− p2)n ≥ e−pn ((n−k+1)p)k

k!
(1− p2n)

hence, limn→∞
e−pn(np)k

k!
1

1−pk
≥ limn→∞ p(Xn = k) ≥ limn→∞ e−pn ((n−k+1)p)k

k!
(1− p2n)

since, as n approaches infinity, p approaches zero, e−λλk

k!
≥ limn→∞ p(Xn = k) ≥ e−λλk

k!

And, the empirical evidence shows Poisson’s distribution very well approximates the binomial distribu-
tion.

Since
∑∞

k=0 e
−λ λk

k! = 1, p(k;λ) can be conceived as the probability of exactly k successes, called as
Poisson distribution.

For a Poisson random variable X that has value i if there are i successes, E[X] = λ and V ar[X] = λ.

- proof:

E[X] =
∑

k≥0 k
1
k!
λke−λ = λe−λ

∑
k≥1

1
(k−1)!

λk−1 = λe−λ
∑

j≥0
λj

j!
= λe−λeλ = λ

E[X2] =
∑

k≥0 k
2 1
k!
λke−λ = λe−λ

∑
k≥1 k

1
(k−1)!

λk−1 = λe−λ(
∑

k≥1(k − 1) 1
(k−1)!

λk−1 +
∑

k≥1
1

(k−1)!
λk−1) =

λe−λ(λ
∑

k≥2
1

(k−2)!
λk−2 +

∑
k≥1

1
(k−1)!

λk−1) = λe−λ(λ
∑

i≥0
1
i!
λi +

∑
j≥0

1
j!
λj) = λe−λ(λeλ + eλ) = λ(λ+ 1)

V ar[X] = λ2 + λ− λ2 = λ

• Geometric distribution: A geometric random variable X with parameter p is given by the following
probability distribution: p(X = n) = (1 − p)n−1p. That is, for the geometric random variable X to
be equal to n, there must be n− 1 failures followed by a success. Here, n is any positive integer.

For a geometric random variable X ,
∑

n≥1 p(X = n) = 1. That is, success is guaranteed to occur
eventually, considering there are infinitely many trials.

- proof: p
∑

n≥1(1− p)n = p((1− p)0 + (1− p)1 + . . .) = 1
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Memoryless (a.k.a., Markov’s) property: for a geometric random variable X with n, k > 0, p(X =
n+ k|X > k) = p(X = n).

- proof: p(X = n+k|X > k) =
p((X=n+k)∩(X>k))

p(X>k)
=

p(X=n+k)
p(X>k)

=
(1−p)n+k−1p∑∞

i=k
(1−p)ip

=
(1−p)n+k−1p

(1−p)k
= (1−p)n−1p = p(X =

n)

For a geometric random variable X that has value i if the success occurs at ith trial, E[X] = 1
p and

V ar[X] = p
(1−p)2

.

- proof:

since p(X ≥ i) =
∑∞

n=i(1− p)n−1p = (1− p)i−1, E[X] =
∑∞

i=1 p(X ≥ i) =
∑∞

i=1(1− p)i−1 = 1
1−(1−p)

E[X2] =
∑

k≥1 k
2qpk = p

∑
k≥1 k

2qpk−1 = p( 2
q2

− 1
q
)

V ar[X] = E[X2]− (E[X])2 = p( 2
q2

− 1
q
)− ( 1

1−(1−p)
)2 = p

(1−p)2

• Negative binomial distribution (a.k.a., Pascal distribution): The probability distribution of the number
X of Bernoulli trials needed to find the rth success at the trial number n = r + k, when the success
probability of a Bernoulli trial is p. The probability, p(X = r + k), the rth success occurs at the trial
number n = r + k (where k = 0, 1, 2, . . .), denoted by f(k; r, p), is

(
r+k−1

k

)
pr(1 − p)k. Since this is

equal to
(−r

k

)
pr(−q)k, this distribution is named so.

- proof:
(−n

k

)
=

(−n)(−n−1)...(−n−k+1)
k!

= (−1)k
n(n+1)...(n+k−1)

k!
= (−1)k

(n+k−1)!
k!(n−1)!

= (−1)k
(n+k−1

k

)
Observation: For r = 1, any negative binomial distribution is essentially a geoemtric distribution.

For p > 0, since
∑∞

k=0 f(k; r, p) = 1, the success is guaranteed to occur eventually.

- proof: due to binomial theorem, pr
∑∞

k=0

(−r
k

)
(−q)k = pr(1− q)−r = prp−r = 1

The sum of geometric random variables follows the negative binomial distribution.

- proof:

say, for any i, the iterations following the ith success and ends with the (i+1)th success are said to be in an epoch; that is, an experiment
is partitioned into epochs;

hence, the overall number of trials needed to achieve k successes is the count of trials in each epoch;

since the number of trials in an epoch is a geometric random variable, leading to the observation stated

For a negative binomial random variable X that has value n if the rth success occurs at the trial number
n = r + k, E[X] = r

p and V ar[X] = rq
p2

.

- proof:

since p(X = k) = qkp where k = 0, 1, 2, . . ., E[X] = qp(1 + 2q + 3q2 + . . .) = qp(1− q)−2 = q
p

let Xi be a random variable denoting the number of Bernoulli trials to be performed to succeed for the ith time after having succeeded

i− 1 times; then, Xi is a geometric random variable with probability of success p; hence, the variance of Xi is 1−p
p2

; since Xis are all

independent V ar[X] = V ar[
∑r

i=1 Xi] =
∑r

i=1 V ar[Xi] = r · 1−p
p2

Let X be a negative binomial random variable with parameters r and p. Let Y be a binomial random
variable with parameters n and p. Then, p(X > n) = p(Y < r). (This is quite useful since finding the
right tail of a negative binomial distribution directly from its definition is difficult.)

- proof: since X is the minimum number of trials needed to get r successes and Y is the number of successes in n trials, X > n iff Y < r
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• Hypergeometric distribution1: Suppose in a population of n balls, n1 are white and n2 = n−n1 are black.
The probability of choosing r balls from these n balls without replacement so that k (min(0 ≤ k ≤ n1, r))

of them are black balls is
(n1

k )(
n−n1
r−k )

(nr)
. We note that

∑n
k=0

(n1
k )(

n−n1
r−k )

(nr)
= 1.

When n1 and n are large in relation to r, hypergeometric distribution is same as b(k; r, n1
n ), that is,

choosing with or without replacement does not matter.

- proof:

(
n1
k

)(
n−n1
r−k

)
(
n
r

) ≈
(r
k

)
(n1

n
)k(1− n1

n
)r−k

For a hypergeometric random variable X that has value k if in r balls k are black, E[X] = rn1
n and

V ar[X] = n−r
n−1rp(1− p).

- proof:

E[X] =
∑n

k=0

k
(
n1
k

)(
n−n1
r−k

)
(
n
r

) = rn1
n

∑n
k=1

(
n1−1
k−1

)(
(n−1)−(n1−1)
(r−1)−(k−1)

)
(
n−1
r−1

) = rn1
n

∑n−1
t=0

(
n1−1

t

)(
(n−1)−(n1−1)

(r−1)−t

)
(
n−1
r−1

) = rn1
n

V ar[X] =
∑n

k=0

(k− rn1
n

)2
(
n1
k

)(
n−n1
r−k

)
(
n
r

) =
∑n

k=0

k2
(
n1
k

)(
n−n1
r−k

)
(
n
r

) − 2rn1
n

∑n
k=0

k
(
n1
k

)(
n−n1
r−k

)
(
n
r

) +
r2n2

1
n2

∑n
k=0

(
n1
k

)(
n−n1
r−k

)
(
n
r

) =

∑n
k=1

k2
(
n1
k

)(
n−n1
r−k

)
(
n
r

) − r2n2
1

n2 = rn1
n

∑n
k=1

(k−1)
(
n1−1
k−1

)(
n−n1
r−k

)
(
n−1
r−1

) + rn1
n

∑n
k=1

(k−1)
(
n1−1
k−1

)(
n−n1
r−k

)
(
n−1
r−1

) − r2n2
1

n2 =
rn1(r−1)(n1−1)

n(n−1)
+

rn1
n

− r2n2
1

n2

• Multinomial distribution: Consider events E1, E2, . . . , Er whose probabilities are respectively p1, p2, . . . pr.
The probability that in n independent trials, E1 occurs k1 times, E2 occurs k2 times, etc., for k1 + k2 +
. . .+ kr = n, denoted by m(k1, k2, . . . , kr;n, p1, p2, . . . , pr), is n!

k1!k2!...kr!
pk11 pk22 . . . pkrr .

- proof: obvious from lectures on counting

The expected number of times the outcome i was observed over n trials is E[Xi] = npi and its variance
V ar[Xi] is npi(1− pi).

Tail bounds

The tail inqualities help in deriving bounds on probabilities when only the mean and variance of a proba-
bility distribution are known.

• Markov’s: Let X be a random variable that assumes only nonnegative values. Then, for all a > 0,
p(X ≥ a) ≤ E[X]

a .

- proof: let Y be I{X ≥ a}, where I is an indicator random variable;

then, p(X ≥ a) = E[Y ] ≤ E[X
a
] =

E[X]
a

;

here, Y ≤ X
a

since if X
a

≥ 1, then Y = 1; otherwise, 0 ≤ X
a

< 1 and Y = 0

Corollary: If X is a nonnegative random variable, then for all c ≥ 1, p(X ≥ cE(X)) ≤ 1
c .

• Chebyshev’s: For any a > 0, p(|X − E[X]| ≥ a) ≤ V ar[X]
a2

.

- proof: p(|X − E[X]| ≥ a) = p((X − E[X])2 ≥ a2) ≤ E[(X−E[X])2]

a2 =
V ar[X]

a2

1not presented in lectures and hence not included in exam syllabus

9



Corollary: For any a > 0, p(|X − E[X]| ≥ cσX) ≤ 1
c2

.

Here is a nice application, the weak law of large numbers: Let X1, X2, . . . , Xn be pairwise independent
variables with the same mean, µ, and deviation, σ (that is, they are identically distributed). Then, for any
ϵ > 0, p(|X1+X2+...+Xn

n − µ| ≥ ϵ) ≤ 1
n(

σ
ϵ )

2. (Significantly, as n → ∞, the RHS tends to 0, saying, the
average of independent samples approaches the mean.)

- proof: since E[X1+X2+...+Xn
n

] = µ and V ar(X1+X2+...+Xn
n

) = σ2

n

• Chernoff’s:
(a) Let X be a random variable.
For any t > 0, p(X ≥ a) ≤ E[etX ]

eta .

In particular, p(X ≥ a) ≤ mint>0
E[etX ]
eta .

- proof: p(X ≥ a) = p(etX ≥ eta) ≤ E[etX ]
eta

For any t < 0, p(X ≤ a) ≤ E[etX ]
eta .

In particular, p(X ≤ a) ≤ mint<0
E[etX ]
eta .

- proof: p(X ≤ a) = p(etX ≥ eta) ≤ E[etX ]
eta

While the value of t that minimizes E[etX ]
eta gives the best possible bounds, often one chooses a value of t

that gives a convenient form.

(b) Let X1, X2, . . . , Xn be independent Poisson trials such that p(Xi = 1) = pi. Also, let X =
∑n

i=1Xi

and µ ≥ E[X].
For any δ > 0, p(X ≥ (1 + δ)µ) < ( eδ

(1+δ)(1+δ)
)µ.

For any 0 < δ < 1, p(X ≤ (1− δ)µ) < ( e−δ

(1−δ)(1−δ)
)µ.

- proof: — not proved in class though used them in solving a couple of problems —

- For large n, Chebyshev’s tail inequality yields tighter bounds to Markov’s. And, Chernoff bounds yield
tight (exponentially small) bounds as compared to the polynomially small bounds via Markov’s or Cheby-
shev’s tail inequalities.

• Hoeffding’s: Let X1, X2, . . . , Xn be independent random variables with E[Xi] = µi and p(ai ≤ Xi ≤
bi) = 1 for constants ai and bi. Then, p(|

∑n
i=1Xi

∑n
i=1 µi| ≥ ϵ) ≤ 2e−2ϵ2/

∑n
i=1(bi−ai)

2
.

- proof: — not proved in class though used it in solving two problems —
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