- A subset of a poset such that every two elements of this subset are comparable is called a chain. A maximal chain is a chain that is not a proper subset of any other chain. A maximum chain is a chain that has cardinality at least as large as every other chain. The height of a poset is the cardinality of a maximum chain.
- A subset of a poset is called an antichain if every two elements of this subset are incomparable is called an antichain. A maximal antichain is an antichain that is not a proper subset of any other antichain. A maximum antichain is an antichain that has cardinality at least as large as every other antichain. The width of a poset is the cardinality of a maximum antichain.
- Dilworth's theorem: If w is the width of a poset (S, \preccurlyeq), then there exists a partition $S=\cup_{i=1}^{w} C_{i}$, where C_{i} is a chain.
[The following is a proof by induction on $|S|$.]
* Basis: Consider a set S with one element, say $S=\{a\}$. In (S, \preccurlyeq), the only maximum antichain is $\{a\}$, its size is 1 , and $C_{1}=\{a\}$ with $C_{1}=S$.
* IH: For every $k^{\prime} \leq k$, if k^{\prime} is the width of poset $(S-\{a\}, \preccurlyeq)$, then there exists a partition $\mathcal{C}=$ $C_{1} \cup \ldots \cup C_{k^{\prime}}$ of $S-\{a\}$, where a is a maximal element along a chain of (S, \preccurlyeq).
Let A^{\prime} be a maximum antichain of $(S-\{a\}, \preccurlyeq)$.
- Lemma 1: For every $C_{i} \in \mathcal{C}, C_{i} \cap A^{\prime} \neq \phi$. Specifically, A^{\prime} has exactly one element form each $C_{i} \in \mathcal{C}$.

Proof: Suppose no element of a chain in this decomposition belongs to A^{\prime}, then A^{\prime} cannot be an antichain of size k : If A^{\prime} has no element from a $C_{j^{\prime}} \in \mathcal{C}$, then two elements in A^{\prime} belong to a chain C_{j} for $j \neq j^{\prime}$. However, if two elements in A^{\prime} belong to a chain $C_{j} \in \mathcal{C}$, then those elements are comparable w.r.t. \preccurlyeq; and, hence A^{\prime} cannot be an antichain in that case.
Since IH only says that there exists an A^{\prime} and the chain decomposition, via the following lemma, we determine a maximum antichain A of $(S-\{a\}, \preccurlyeq)$ given a chain decomposition comprising k chains.

- Lemma 2: For every $C_{i} \in \mathcal{C}$, let x_{i} be the maximal element in C_{i} that belongs to a maximum antichain A_{i} of $(S-\{a\}, \preccurlyeq)$. Then, $A=\left\{x_{1}, \ldots, x_{k}\right\}$ is an antichain of $(S-\{a\}, \preccurlyeq)$.
Proof: For every i, A_{i} always exists, since an element x_{i}^{\prime} of C_{i} belongs to antichain A^{\prime}. (For example, such an element can be found by walking along C_{i} from top to bottom.)
Suppose $x_{j^{\prime \prime}} \in A_{i} \cap C_{j}$. From the definition of x_{j}, we know $x_{j^{\prime \prime}} \preccurlyeq x_{j}$. Suppose $x_{j} \preccurlyeq x_{i}$. Then, from transitivity, $x_{j^{\prime \prime}} \preccurlyeq x_{i}$. However, $x_{j^{\prime \prime}}$ and x_{i} are part of an antichain; therefore, $x_{j} \npreceq x_{i}$.
Analogously, suppose $x_{i^{\prime \prime}} \in A_{j} \cap C_{i}$. From the definition of x_{i}, we know $x_{i^{\prime \prime}} \preccurlyeq x_{i}$. Suppose $x_{i} \preccurlyeq x_{j}$. Then, from transitivity, $x_{i^{\prime \prime}} \preccurlyeq x_{j}$. However, $x_{i^{\prime \prime}}$ and x_{j} are part of an antichain; therefore, $x_{i} \nprec x_{j}$.
For every $x_{i}, x_{j} \in A$, since $x_{j} \npreceq x_{i}$ and $x_{i} \nprec x_{j}, A$ is an antichain.
* IS: Since a is a maximal element of (S, \preccurlyeq), there are two possibilities: $x_{i} \preccurlyeq a$ for some $C_{i} \in \mathcal{C}$ (via maximal element along C_{i}) or $x_{i} \npreceq a$ for every $C_{i} \in \mathcal{C}$.
In the latter case, a is not related to any element in A. Hence, using induction hypothesis, $C_{1} \cup \ldots \cup$ $C_{k} \cup\{a\}$ is a partition of S into $k+1$ chains. Further, due to Lemma 2 and since no x_{i} is related to a, it is immediate to note $A \cup\{a\}$ is an antichain of size is $k+1$.

In the former case, consider $\left(S-C_{i}-\{a\}, \preccurlyeq\right)$. From the induction hypothesis, $S-C_{i}-\{a\}$ is partitioned into $\mathcal{C}^{\prime}=\left\{C_{1}, \ldots, C_{i-1}, C_{i+1}, \ldots, C_{k}\right\}$ of chains. (Note that $S-C_{i}-\{a\}$ has size smaller than $|S|$; hence, we were able to apply IH, by the means of strong induction.) And, since A is an antichain (Lemma 2), $\left(S-C_{i}-\{a\}, \preccurlyeq\right)$ has an antichain $A-\left\{x_{i}\right\}$, which is of size $k-1$. The chains in \mathcal{C}^{\prime} together with the chain formed by the subpart of C_{i} underneath a (including a) is a partition of S into k chains, while A is an antichain of size k.

[Illustrating the conventions in the above proof. In the first case of IS, a is above the maximal element of a chain, say C_{i}. In the second case of IS, a is located on its own chain. The dashed lines indicate elements beyond elements of A.]

- Sperner's lemma: The size of a largest antichain of any $\operatorname{poset}(\mathcal{P}(S), \subseteq)$ is $\binom{n}{\left.\frac{n}{2}\right\rfloor}$, where $S=\{1,2, \ldots, n\}$.
* for any fixed k, all k-sets together form an antichain;
for $k=\left\lfloor\frac{n}{2}\right\rfloor$, there exists an antichain of size $\left\lfloor\frac{n}{2}\right\rfloor$
* no antichain of size $>\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ is possible:
consider adding one by one of the elements in S along each chain, leading to, number of chains being $n!$; for any element A of any antichain \mathcal{F} with $|A|=k$, there are $k!(n-k)!$ chains that contain A (each chain comprising monotonically increasing sized sets from ϕ to S containing A); denoting the number of k-sets \mathcal{F} contains with m_{k},
since no chain can pass through two different sets A and B of \mathcal{F}, number of chains passing through all the members of \mathcal{F} is $\sum_{k=0}^{n} m_{k} k!(n-k)!$, which is $\leq n!\Rightarrow \sum_{k=0}^{n} \frac{m_{k}}{\binom{n}{k}} \leq 1 \Rightarrow \frac{1}{\binom{n}{(n / 2\rfloor}} \sum_{k=0}^{n} m_{k} \leq 1$

