- A subset of a poset such that every two elements of this subset are comparable is called a *chain*. A *maximal chain* is a chain that is not a proper subset of any other chain. A *maximum chain* is a chain that has cardinality at least as large as every other chain. The *height of a poset* is the cardinality of a maximum chain.
- A subset of a poset is called an *antichain* if every two elements of this subset are incomparable is called an *antichain*. A *maximal antichain* is an antichain that is not a proper subset of any other antichain. A *maximum antichain* is an antichain that has cardinality at least as large as every other antichain. The *width* of a poset is the cardinality of a maximum antichain.
- Dilworth's theorem: If w is the width of a poset (S, \preccurlyeq) , then there exists a partition $S = \bigcup_{i=1}^{w} C_i$, where C_i is a chain.

[The following is a proof by induction on |S|.]

- * Basis: Consider a set S with one element, say $S = \{a\}$. In (S, \preccurlyeq) , the only maximum antichain is $\{a\}$, its size is 1, and $C_1 = \{a\}$ with $C_1 = S$.
- * IH: For every k' ≤ k, if k' is the width of poset (S {a}, ≼), then there exists a partition C = C₁ ∪ ... ∪ C_{k'} of S {a}, where a is a maximal element along a chain of (S, ≼).
 Let A' be a maximum antichain of (S {a}, ≼).
- Lemma 1: For every C_i ∈ C, C_i ∩ A' ≠ φ. Specifically, A' has exactly one element form each C_i ∈ C. Proof: Suppose no element of a chain in this decomposition belongs to A', then A' cannot be an antichain of size k: If A' has no element from a C_{j'} ∈ C, then two elements in A' belong to a chain C_j for j ≠ j'. However, if two elements in A' belong to a chain C_j ∈ C, then those elements are comparable w.r.t. ⊰; and, hence A' cannot be an antichain in that case.

Since IH only says that there exists an A' and the chain decomposition, via the following lemma, we determine a maximum antichain A of $(S - \{a\}, \preccurlyeq)$ given a chain decomposition comprising k chains.

- Lemma 2: For every $C_i \in C$, let x_i be the maximal element in C_i that belongs to a maximum antichain A_i of $(S - \{a\}, \preccurlyeq)$. Then, $A = \{x_1, \ldots, x_k\}$ is an antichain of $(S - \{a\}, \preccurlyeq)$.

Proof: For every *i*, A_i always exists, since an element x'_i of C_i belongs to antichain A'. (For example, such an element can be found by walking along C_i from top to bottom.)

Suppose $x_{j''} \in A_i \cap C_j$. From the definition of x_j , we know $x_{j''} \preccurlyeq x_j$. Suppose $x_j \preccurlyeq x_i$. Then, from transitivity, $x_{j''} \preccurlyeq x_i$. However, $x_{j''}$ and x_i are part of an antichain; therefore, $x_j \preccurlyeq x_i$.

Analogously, suppose $x_{i''} \in A_j \cap C_i$. From the definition of x_i , we know $x_{i''} \preccurlyeq x_i$. Suppose $x_i \preccurlyeq x_j$. Then, from transitivity, $x_{i''} \preccurlyeq x_j$. However, $x_{i''}$ and x_j are part of an antichain; therefore, $x_i \preccurlyeq x_j$. For every $x_i, x_j \in A$, since $x_j \preccurlyeq x_i$ and $x_i \preccurlyeq x_j$, A is an antichain.

* IS: Since a is a maximal element of (S, ≤), there are two possibilities: x_i ≤ a for some C_i ∈ C (via maximal element along C_i) or x_i ≤ a for every C_i ∈ C.
In the latter case, a is not related to any element in A. Hence, using induction hypothesis, C₁ ∪ ... ∪

 $C_k \cup \{a\}$ is a partition of S into k + 1 chains. Further, due to Lemma 2 and since no x_i is related to a, it is immediate to note $A \cup \{a\}$ is an antichain of size is k + 1.

In the former case, consider $(S - C_i - \{a\}, \preccurlyeq)$. From the induction hypothesis, $S - C_i - \{a\}$ is partitioned into $C' = \{C_1, \ldots, C_{i-1}, C_{i+1}, \ldots, C_k\}$ of chains. (Note that $S - C_i - \{a\}$ has size smaller than |S|; hence, we were able to apply IH, by the means of strong induction.) And, since A is an antichain (Lemma 2), $(S - C_i - \{a\}, \preccurlyeq)$ has an antichain $A - \{x_i\}$, which is of size k - 1. The chains in C' together with the chain formed by the subpart of C_i underneath a (including a) is a partition of S into k chains, while A is an antichain of size k.

[Illustrating the conventions in the above proof. In the first case of IS, a is above the maximal element of a chain, say C_i . In the second case of IS, a is located on its own chain. The dashed lines indicate elements beyond elements of A.]

- Sperner's lemma: The size of a largest antichain of any poset $(\mathcal{P}(S), \subseteq)$ is $\binom{n}{\lfloor \frac{n}{2} \rfloor}$, where $S = \{1, 2, \dots, n\}$.
- * for any fixed k, all k-sets together form an antichain; for $k = \lfloor \frac{n}{2} \rfloor$, there exists an antichain of size $\lfloor \frac{n}{2} \rfloor$
- no antichain of size > (ⁿ_[ⁿ/₂]) is possible:
 consider adding one by one of the elements in S along each chain, leading to, number of chains being n!;
 for any element A of any antichain F with |A| = k, there are k!(n-k)! chains that contain A (each chain comprising monotonically increasing sized sets from φ to S containing A);
 denoting the number of k-sets F contains with m_k,

since no chain can pass through two different sets A and B of \mathcal{F} , number of chains passing through all the members of \mathcal{F} is $\sum_{k=0}^{n} m_k k! (n-k)!$, which is $\leq n! \Rightarrow \sum_{k=0}^{n} \frac{m_k}{\binom{n}{k}} \leq 1 \Rightarrow \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \sum_{k=0}^{n} m_k \leq 1$