- For any two boolean matrices $A_{n\times n}$ and $B_{n\times n}$, we call k a witness of tuple (i,j) whenever $A_{ik}=B_{kj}=1$. A matrix $W_{n\times n}$ is called a witness matrix of boolean matrices $A_{n\times n}$ and $B_{n\times n}$ whenever W_{ij} stores a witness corresponding to tuple (i,j) for every $1 \le i,j \le n$. The witness matrix has many applications, including efficiently computing all-pairs shortest paths in unweighted undirected graphs and transitive closure of directed graphs.
- The ij-th entry of AB, denoted by $[AB]_{ij}$, has the number of witnesses of tuple (i, j).

First, we devise an algorithm to find the witness of those (i, j)-entries of W for which there is exactly one witness; that is, for such (i, j) tuple, there is only one k such that $A_{ik} = B_{kj} = 1$. Later, with the help of random sampling, this algorithm is extended to find every entry of W.

• Lemma 1: Let $A'_{n\times n}$ be a matrix with $A'_{ij}=jA_{ij}$ for every $1\leq i,j\leq n$. For any (i,j), if $[AB]_{ij}=1$, then $[A'B]_{ij}$ has the unique witness of (i,j).

Proof: If $[AB]_{ij}=1$, then there exists a k such that $A_{ik}=1$ and $B_{kj}=1$. That is, k is the witness for $[AB]_{ij}$ being equal to 1, and for every $k'\neq k$, either $A_{ik'}=0$ or $A_{k'j}=0$. Hence, $[A'B]_{ij}=\sum_{k=1}^n A'_{ik}B_{kj}=k$.

- Using this observation, the following deterministic algorithm finds the correct witness for every (i, j) that has a unique witness:
 - (a) for every $1 \le i, j \le n$
 - (b) $A'_{ij} = jA_{ij}$
 - (c) compute A'B and AB
 - (d) for every 1 < i, j < n
 - (e) if $[AB]_{ij}$ is equal to 1 then $W_{ij} = [A'B]_{ij}$ else $W_{ij} = 0$
- For a tuple (i, j), let $w = [AB]_{ij} > 2$. That is, w is the number of witnesses for tuple (i, j). We show that a random sample $R \subseteq [n]$, with $\frac{n}{2} \le w|R| \le n$, is very likely to have a witness for (i, j).

Next we define matrices A^R and B^R . For any $k \in [1, n]$ not in R, we define the k^{th} column of A^R and the k^{th} row of B^R are null vectors; if $k \in R$, then k^{th} column in A^R is same as the k^{th} column in A and k^{th} row in B^R is same as the k^{th} row in B. First, this construction leads to ij-th entry of $[A^RB^R]$ to have the unique witness when (i,j) has a unique witness. Further, the following theorem shows random sampling could help in finding a witness of (i,j) if (i,j) has more than one witness.

Theorem 1: For any (i,j), given $[AB]_{ij}=w>0$, the probability $[A^RB^R]_{ij}=1$ is at least $\frac{1}{2e}$.

Proof: This probability is

$$\begin{split} &= \frac{\binom{w}{1}\binom{n-w}{|R|-1}}{\binom{n}{|R|}} \\ &= \frac{w|R|}{n} \big(\prod_{j=0}^{w-2} \frac{n-|R|-j}{n-1-j} \big) \\ &\geq \frac{w|R|}{n} \big(\prod_{j=0}^{w-2} \frac{n-|R|-j-(w-j-1)}{n-1-j-(w-j-1)} \big) \end{split}$$

$$\begin{split} &= \frac{w|R|}{n} \big(\prod_{j=0}^{w-2} \frac{n-w-(|R|-1)}{n-w} \big) \\ &= \frac{w|R|}{n} \big(1 - \frac{|R|-1}{n-w} \big)^{w-1} \\ &\geq \frac{1}{2} \big(1 - \frac{1}{w} \big)^{w-1} \quad \text{(since } \frac{n}{2} \leq w|R| \leq n, \, \frac{w|R|}{n} \geq \frac{1}{2} \text{ and } \frac{|R|-1}{n-w} = \frac{|R|-1}{w(\frac{n}{w}-1)} \leq \frac{1}{w}) \\ &\geq \frac{1}{2e}. \end{split}$$

• For any entry $[AB]_{ij}$, if there are many witnesses, then having a small |R| helps. On the other hand, if $[AB]_{ij}$ has small number of witnesses, then having a large |R| would help. Hence, every size in $S = \{1, 2, \dots \frac{n}{2}\}$ is tried for |R|. Speicifically, for $w = [AB]_{ij}$, there exists a $|R| \in S$ satisfying $\frac{n}{2} \leq w|R| \leq n$. Besides, as argued below, trying these values for |R| suffice to ensure there will only be a few entries of W left to be computed via brute-force.

For every $d \in S$, repeatedly sampling R of size d independently and uniformly at random from [n] for $O(\lg n)$ times, further reduces the probability an entry of W left empty. That is, from Theorem 1, the probability none of these R vectors lead to a unique witness for (i,j)-th entry is at most $(1-\frac{1}{2e})^{O(\lg n)}$, for any (i,j). Of course, witnesses for some of the entries may not be found via this clever idea; these missing witnesses can be found by brute-force.

- (a) $C \leftarrow AB$; initialize W to null matrix
- (b) for every $d \in S$
- (c) repeat for $c \cdot (\lg n)$ times //value of c to be fixed later
- (d) choose a subset $R \subseteq [n]$ of size d, independently and uniformly at random
- (e) construct A^R , B^R , and A^{Rmod} , where $[A^{Rmod}]_{ij}$ is $j[A^R]_{ij}$ for every i, j
- (f) $C^R \leftarrow A^R B^R; Z \leftarrow A^{Rmod} B^R$
- (g) for every $1 \le i, j \le n$
- (h) if $C_{ij} > 0$ and $C^R = 1$ then $W_{ij} \leftarrow Z_{ij}$
- (i) for every (i, j), if $C_{ij} > 0$ and $W_{ij} = 0$, find a witness of (i, j) by brute-force
- For any C_{ij} , there exists a $d \in S$ such that $\frac{n}{2} \leq C_{ij} \cdot d \leq n$. From the above description, probability that a random choice of R does not have a unique witness for W_{ij} is at most $(1 \frac{1}{2e})$. Hence, probability W_{ij} not found after $c \cdot \lg n$ iterations is at most $(1 \frac{1}{2e})^{c \lg n}$. For having the error probability polynomially small, upper bounding $(1 \frac{1}{2e})^{c \lg n}$ with $\frac{1}{n}$, leads to 3.77 being a lower bound on c.

Since the probability an entry of W not found after $c \cdot \lg n$ iterations is at most $\frac{1}{n}$, by the time algorithm reaches step (i), the expected number of witnesses remaining to be found is n. Since each entry of W can be determined in O(n) time by brute-force, step (i) takes $O(n^2)$ expected time.

Step (f) takes O(MM(n)) time, where MM(n) denotes time to multiply two $n \times n$ matrices, and this step gets executed $O((\lg n)^2)$ times. Steps (g)-(h) take $O(n^2)$ time and they get executed $O((\lg n)^2)$ times. As a whole, the algorithm takes $O(MM(n)(\lg n)^2)$ expected time.

References:

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.