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• For any two boolean matrices An×n and Bn×n, we call k a witness of tuple (i, j) whenever Aik = Bkj =
1. A matrix Wn×n is called a witness matrix of boolean matrices An×n and Bn×n whenever Wij stores a
witness corresponding to tuple (i, j) for every 1 ≤ i, j ≤ n. The witness matrix has many applications,
including efficiently computing all-pairs shortest paths in unweighted undirected graphs and transitive
closure of directed graphs.

• The ij-th entry of AB, denoted by [AB]ij , has the number of witnesses of tuple (i, j).

First, we devise an algorithm to find the witness of those (i, j)-entries of W for which there is exactly one
witness; that is, for such (i, j) tuple, there is only one k such that Aik = Bkj = 1. Later, with the help of
random sampling, this algorithm is extended to find every entry of W .

• Lemma 1: Let A′
n×n be a matrix with A′

ij = jAij for every 1 ≤ i, j ≤ n. For any (i, j), if [AB]ij = 1,
then [A′B]ij has the unique witness of (i, j).

Proof: If [AB]ij = 1, then there exists a k such that Aik = 1 and Bkj = 1. That is, k is the witness
for [AB]ij being equal to 1, and for every k′ ̸= k, either Aik′ = 0 or Ak′j = 0. Hence, [A′B]ij =∑n

k=1A
′
ikBkj = k.

• Using this observation, the following deterministic algorithm finds the correct witness for every (i, j) that
has a unique witness:

(a) for every 1 ≤ i, j ≤ n

(b) A′
ij = jAij

(c) compute A′B and AB

(d) for every 1 ≤ i, j ≤ n

(e) if [AB]ij is equal to 1 then Wij = [A′B]ij else Wij = 0

• For a tuple (i, j), let w = [AB]ij > 2. That is, w is the number of witnesses for tuple (i, j). We show that
a random sample R ⊆ [n], with n

2 ≤ w|R| ≤ n, is very likely to have a witness for (i, j).

Next we define matrices AR and BR. For any k ∈ [1, n] not in R, we define the kth column of AR and the
kth row of BR are null vectors; if k ∈ R, then kth column in AR is same as the kth column in A and kth

row in BR is same as the kth row in B. First, this construction leads to ij-th entry of [ARBR] to have the
unique witness when (i, j) has a unique witness. Further, the following theorem shows random sampling
could help in finding a witness of (i, j) if (i, j) has more than one witness.

Theorem 1: For any (i, j), given [AB]ij = w > 0, the probability [ARBR]ij = 1 is at least 1
2e .

Proof: This probability is

=
(w1)(

n−w
|R|−1)

( n
|R|)

= w|R|
n (Πw−2

j=0
n−|R|−j
n−1−j )
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= w|R|
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= w|R|
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≥ 1
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1
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2
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=
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w
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2e .

• For any entry [AB]ij , if there are many witnesses, then having a small |R| helps. On the other hand,
if [AB]ij has small number of witnesses, then having a large |R| would help. Hence, every size in
S = {1, 2, . . . n2 } is tried for |R|. Speicifically, for w = [AB]ij , there exists a |R| ∈ S satisfying
n
2 ≤ w|R| ≤ n. Besides, as argued below, trying these values for |R| suffice to ensure there will only be
a few entries of W left to be computed via brute-force.

For every d ∈ S, repeatedly sampling R of size d independently and uniformly at random from [n] for
O(lg n) times, further reduces the probability an entry of W left empty. That is, from Theorem 1, the
probability none of these R vectors lead to a unique witness for (i, j)-th entry is at most (1 − 1

2e)
O(lgn),

for any (i, j). Of course, witnesses for some of the entries may not be found via this clever idea; these
missing witnesses can be found by brute-force.

(a) C ← AB; initialize W to null matrix

(b) for every d ∈ S

(c) repeat for c · (lg n) times //value of c to be fixed later

(d) choose a subset R ⊆ [n] of size d, independently and uniformly at random

(e) construct AR, BR, and ARmod, where [ARmod]ij is j[AR]ij for every i, j

(f) CR ← ARBR; Z ← ARmodBR

(g) for every 1 ≤ i, j ≤ n

(h) if Cij > 0 and CR = 1 then Wij ← Zij

(i) for every (i, j), if Cij > 0 and Wij = 0, find a witness of (i, j) by brute-force

• For any Cij , there exists a d ∈ S such that n
2 ≤ Cij · d ≤ n. From the above description, probability that

a random choice of R does not have a unique witness for Wij is at most (1− 1
2e). Hence, probability Wij

not found after c · lg n iterations is at most (1 − 1
2e)

c lgn. For having the error probability polynomially
small, upper bounding (1− 1

2e)
c lgn with 1

n , leads to 3.77 being a lower bound on c.

Since the probability an entry of W not found after c · lg n iterations is at most 1
n , by the time algorithm

reaches step (i), the expected number of witnesses remaining to be found is n. Since each entry of W can
be determined in O(n) time by brute-force, step (i) takes O(n2) expected time.

Step (f) takes O(MM(n)) time, where MM(n) denotes time to multiply two n×n matrices, and this step
gets executed O((lg n)2) times. Steps (g)-(h) take O(n2) time and they get executed O((lg n)2) times. As
a whole, the algorithm takes O(MM(n)(lg n)2) expected time.
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