
Boruvka’s and KKT’s MST algorithms R. Inkulu

— Boruvka’s MST algorithm —

Below, we assume the input graph G(V,E) is a connected positive integer edge-weighted undirected
simple graph. We also assume edge weights of the input graph are pairwise distinct. Given G, we want to
find the MST of G.

• Observation 1: For any vertex v ∈ V of G, the MST of G must contain the edge that has the minimum
weight among all the edges incident to v.

Proof: Due to the MST cut property.

• Observation 2: Marking the minimum weighted edge incident to v at each vertex v of G independently
does not cause marked edges to form any cycle. Hence, vertices of G with all such marked edges is a
spanning forest of G.

Proof: Suppose there is a cycle C in the graph induced by marked edges. Consider the maximum weighted edge (u, v) ∈ C. W.l.o.g., suppose

(u, v) was marked by v. But the weight of marked edge (v, v′) on C is strictly less than w(u, v), contradicting the least weighted edge incident

to v is (u, v).

• Definition: The contraction of a set S of nodes of an edge weighted undirected simple graph G(V,E) is
an edge weighted undirected graph G/S wherein

V − S ∪ {v} is the vertex set of G/S for a supernode v such that v /∈ V , and

for every edge e(v′, v′′) ∈ G, an edge e′(w′, w′′) is introduced into G/S, where w′ = v (resp.
w′′ = v) if v′ ∈ S (resp. v′′ ∈ S) otherwise w′ = v′ (resp. w′′ = v′′).

Note that contracting vertex set S of G could cause a bunch of self-loops and multiedges, each of which
is incident to v, in G/S.

• Observation 3: Corresponding to every edge (u′, v′) of G/S, there is a unique edge (u, v) ∈ G such that
u ∈ u′, v ∈ v′, and u, v ∈ V .

• Pseudocode:

(a) For every node v of G, make a greedy choice by marking the least weighted edge e incident to v,
and output e.

(b) For each connected component CC of the graph induced by marked edges in G,

(i) G← G/S, where S is the set of nodes of CC.

(c) Compute simple graph G′ from G: remove self-loops in G; for every two nodes v′, v′′ of G, if there
are more than one edge between v′ and v′′, then remove all the edges between v′ and v′′ except for
the one with least weight.

(d) If the number of nodes in G′ is greater than one, rename G′ as G, and go to Step (a).

Below, a phase denotes the first three steps of this procedure.

1

http://www.iitg.ac.in/rinkulu/

• Proof of correctness:

- Since the number of nodes at least halves from any phase to the phase subsequant to it, the procedure does
terminate.

- Just after Step (a), graph induced by marked edges is spanning forest of G. That is, just before contracting
(super)nodes belonging to any connected component in Step (b), there is a tree spanning those nodes.

- Just before termination, i.e., once all phases are executed, since Step (d) ensures G′ has exactly one
supernode, the graph induced by marked edges in G is a spanning tree of G.

- For any supernode v, consider the cut C(A, V − A), where A is the set of nodes of G that result from
recursively uncontracting v. Since v is marking the light-edge of C, from the MST cut property, this
marked edge is guaranteed to belong to the MST of G. Hence, G′ is a minimum spanning tree of G.

• The Boruvka’s algorithm takes O(m lg n) time in the worst-case:

- If a phase i starts with n′ vertices and e′ edges, phase i + 1 starts with at most n′

2 vertices and at most e′

edges. Hence, the number of phases is O(lg n).

- Further, each phase takes O(m) time: identifying connected components w.r.t. marked edges takes O(m+
n) time; forming an adjacency list corresponding to simple graph takes O(m + n) time; since G is
connected, m ≥ n− 1.

- Though the algorithm takes O(m lg n) time in the worst-case, typically, number of nodes drop more than
a factor of two from one phase to the next phase. Due to this reason, in practice, Boruvka’s algorithm
runs faster. Many ideas in this algorithm are used in MST algorithms invented later, ex. in O(m lg lg n)
time Yao’s algorithm, O(m lg∗ n) time Fredman-Tarjan’s algorithm, and in Karger’s expected linear time
algorithm. Besides, Boruvka’s algorithm is parallelizable.

2

— KKT’s1 expected linear time MST algorithm —

• Let subgraph F of G be a forest. Then, an edge e(u, v) ∈ G is F-heavy if we is larger than the maximum
weighted edge on the unique path from u to v in F . Otherwise, e is F-light. Note that e is F -light even
if u-v path does not exist in F . The F-heavy and F-light edges are useful in exploiting the MST cycle
property.

• Below figure describes this algorithm. Since each Boruvka phase reduces the number of vertices by at
least half, three Boruvka phases are applied to input grpah G(V,E) so that the number of vertices in G1 is
at most |V |

8 . The edges in E1 are randomly sampled so that |E2| is at most 2|V1| = |V |
4 . Since the number

of vertices and the number of edges in G are reduced, MST of G2 can be computed efficiently. Indeed,
on G2, with a recursive call, MST F2 of G2 is computed. The F2 helps in pruning F2-heavy edges from
G1, and leading to a set E3 comprising F2-light edges in G1. The sampling lemma, stated below, helps
in upper bounding |E3|, which turns out to be |E1|

2 . With yet another recursive invocation, MST of G3 is
computed. Since the edges removed in sampling are F2-heavy, and since G3 retains all the F2-light edges
in G1, the edges in MST (G3) together with the marked edges in Boruvka phases together are guaranteed
to yield a MST of G.

G(V,E)

G1(V1, E1) with |V1| ≤ |V |
8

G2(V1, E2) with |E2| ≤ 2|V1|

F2 = MST (G2) G3(V1, E3) with |E3| ≤ |E1|
2

F = MST (G3)

execute three Boruvka phases

sample 2|V1| edges from G1

remove F2-heavy edges from G1

C comprising contracted

(due to sampling lemma)

Output: C ∪ F

edges in Boruvka phases

with replacement

MST-KKT(G(V, E)):

(i) if |V | and |E| are of O(1), compute a MSF F ′ by brute-force; return F ′

1named after its inventors Karger, Klein, and Tarjan

3

(ii) G1(V1, E1)← apply three Boruvka phases to G

also, let C be the set of contracted edges in these phases

(iii) G2(V1, E2) ← sample a set E2 of 2|V1| edges from G1, independently, uniformly at random, and
with replacement

(iv) F2 ←MST-KKT(G2)

(v) G3(V1, E3) ← using a linear-time MST verification algorithm, delete F2-heavy edges in G1 from
G1

(vi) F ←MST-KKT(G3)

(vii) return C ∪ F

The step (v) is accomplished by using a linear-time algorithm for MST verification: given a graph G1 and
a spanning forest F2, the MST verification algorithm by Komlos’ determines the set E3 of F2-light edges
in G1. Essentially, KKT’s algorithm uses ideas from Boruvka’s, utilizes the services of a MST verification
algorithm, and exploits random sampling.

This procedure is guaranteed to terminate since the number of vertices are reducing in each recursive call.
We know from Boruvka’s algorithm, each contracted edge in a Boruvka phase is guaranteed to belong to
MST (G). Due to MST cycle property, none of the deleted F2 heavy-edges are part of MST (G). Hence,
it is easy to see the output graph is spanning, acyclic, and connected.

• Observation: Let E2 be a set of randomly sampled edges of a graph G1(V1, E1). Any edge e ∈ E1 is
F2-light iff e ∈MST (E2 ∪ {e}).

Sampling Lemma: For a random sample E2 ⊆ E1 of edges of a graph G1(V1, E1), the expected number
of F2-light edges is at most |V1||E1|

|E2| .

Proof: It suffices to show pr[e is F2-light] ≤ |V1|
|E2| , for any randomly sampled edge e from E1. From the

backward analysis,

pr[e is F2-light | fixed E2 ∪ {e}]
= pr(e ∈MST (E2 ∪ {e}) | fixed E2 ∪ {e}) (due to the above observation)

≤ |V1|−1
|E2∪{e}|

≤ |V1|
|E2| .

Hence, pr[e is F2-light]

= pr[e is F2-light | fixed E2 ∪ {e}] · pr[fixed E2 ∪ {e}]
≤ pr[e is F2-light | fixed E2 ∪ {e}]

≤ |V1|
|E2| .

• By choosing |E2| = 2|V1| ≤ 2(n8) =
n
4 , from the sampling lemma, the expected number of F2-light edges

in G1 is at most |E1|
2 ≤

m
2 . The latter is due to |E1| ≤ |E|. Hence, |E3| is at most m

2 .

4

Since each Boruvka phase halves the number of vertices, the three Boruvka phases together lead to |V1| ≤
|V |
8 = n

8 . Further, the number of vertices in G1, G2, and G3 are equal.

• Let T (n,m) be the expected running time of MST-KKT on graph G with n vertices and m edges. Since
step (i) takes O(m+n) time, since step (iii) takes O(m+n) time, and since the MST verification algorithm
takes O(m+n) time, the recurrence (ignoring base cases) is, T (n,m) ≤ T (n8 ,

n
4)+T (n8 ,

m
2)+O(m+n).

The first term on the right side of this recurrence is for the recursive invocation on G2 and the second term
is due to the recursive call on G3. Solving this recurrence with the guess and substitute method, the
expected running time is O(m + n). The tighter analysis shows that this algorithm indeed takes O(m)
expected time.

References:
R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.

5

