Bloom Filter R. Inkulu

• Given a set $S = \{s_1, \dots, s_m\}$ of strings from a universe U, preprocess S into a data structure so that to answer queries of the following form: given a string s, determine whether $s \in S$.

The objective is to preprocess S to build a data structure D of size O(m) bits, and using D, for any given query string s, decision algorithm answers correctly when $s \in S$ and answers with a constant probability of error when $s \notin S$.

• Let A be an array of size n bits, called a *fingerprint* of S. Let $\mathcal{H} = \{h_1, h_2, \dots, h_k\}$ be a collection of hash functions, where $h_i : S \to A$ for $1 \le i \le k$. Each h_i is assumed to hash any input string independently and uniformly at random. It is also assumed any hash function \mathcal{H} is encoded using a constant number of bits.

Below, we preprocess S to build a fingerprint A of S by applying every hash function in H on every string in S. The query algorithm probes a subset of entries of A to decide whether the input string $s \in S$. Again, every entry of A that is probed is determined by applying a unique hash function in H on S, and exactly S entries of S are probed.

- Preprocessing algorithm to build a fingerprint A of strings in S:
 - 1. for every i from 1 to n
 - 2. $A[i] \leftarrow 0$ (denotes 0 is being stored in i^{th} -bit of A)
 - 3. for every $s_i \in \mathcal{S}$
 - 4. for every $h \in \mathcal{H}$
 - 5. $A[h(s_i)] \leftarrow 1$
- The preprocessing algorithm takes O(n + mkt) time, where t is the maximum time any hash function in \mathcal{H} takes to hash any s_i .
- The data structure A constructed in the preprocessing phase has O(n) bits. The beauty of this data structure lies in fingerprint A of S being independent of length of any string in S.
- Since each $h \in \mathcal{H}$ hashes independently and uniformly at random, for any $s_i \in \mathcal{S}$, after hashing s_i with $h, pr(A[j] = 1) = \frac{1}{n}$ for any $j \in [1, n]$.

- Algorithm to query whether $s \in \mathcal{S}$:
 - 1. for every i from 1 to k
 - 2. if $A[h_i(s)]$ is 0 return " $s \notin S$ "
 - 3. return " $s \in \mathcal{S}$ "
- Since hashing any string with any $h \in \mathcal{H}$ takes O(t) time in the worst case, the query algorithm takes O(kt) time in the worst case.

Since the preprocessing algorithm sets $A[h(s_i)]$ to 1 for every $h \in \mathcal{H}$ and every $s_i \in \mathcal{S}$, all entries probed by the query algorithm for input s are guaranteed to be 1 for any $s \in \mathcal{S}$. Hence, the probability query algorithm outputs $s \notin \mathcal{S}$ given $s \in \mathcal{S}$ is 0.

- To minimize the error probability by choosing the right k in (2), we equate $\frac{d}{dk}(k\ln(1-e^{-km/n}))$ to 0. This leads to $k=(\ln 2)(\frac{n}{m})$.

Substituting k in (2), the probability of error when query string $s \in \mathcal{S}$ is, $(1 - e^{-\ln 2})^{(\ln 2)\frac{n}{m}} \approx (0.6185)^{n/m}$.

Significantly, as n/m increases, the probability of error falls exponentially. Note that n/m is the number of bits in fingerprint A per string in S.

- When the fingerprint size n is chosen as O(m),

the number k of hash functions \mathcal{H} is a constant,

preprocessing algorithm takes O(mt) time,

fingerprint A computed after preprocessing S consumes O(m) bits,

the query time is a constant if t is a constant (since k is a constant), and

for any string s input to query algorithm,

if $s \in \mathcal{S}$ query algorithm answers correctly, and

if $s \notin \mathcal{S}$ query algorithm errs with a constant probability (since k is a constant).