
Bloom Filter R. Inkulu

• Given a set S = {s1, . . . , sm} of strings from a universe U , preprocess S into a data structure so that to
answer queries of the following form: given a string s, determine whether s ∈ S.

The objective is to preprocess S to build a data structure D of size O(m) bits, and using D, for any given
query string s, decision algorithm answers correctly when s ∈ S and answers with a constant probability
of error when s /∈ S.

• Let A be an array of size n bits, called a fingerprint of S. LetH = {h1, h2, . . . , hk} be a collection of hash
functions, where hi : S → A for 1 ≤ i ≤ k. Each hi is assumed to hash any input string independently
and uniformly at random. It is also assumed any hash function H is encoded using a constant number of
bits.

Below, we preprocess S to build a fingerprint A of S by applying every hash function inH on every string
in S. The query algorithm probes a subset of entries of A to decide whether the input string s ∈ S. Again,
every entry of A that is probed is determined by applying a unique hash function inH on s, and exactly k
entries of A are probed.

• Preprocessing algorithm to build a fingerprint A of strings in S:

1. for every i from 1 to n

2. A[i]← 0 (denotes 0 is being stored in ith-bit of A)

3. for every si ∈ S
4. for every h ∈ H
5. A[h(si)]← 1

- The preprocessing algorithm takes O(n+mkt) time, where t is the maximum time any hash function in
H takes to hash any si.

- The data structure A constructed in the preprocessing phase has O(n) bits. The beauty of this data struc-
ture lies in fingerprint A of S being independent of length of any string in S.

- Since each h ∈ H hashes independently and uniformly at random, for any si ∈ S, after hashing si with
h, pr(A[j] = 1) = 1

n for any j ∈ [1, n].

Specifically, after preprocessing algorithm exits, pr(A[j] = 0) = (1− 1
n)

km for any j ∈ [1, n]. ——- (1)

• Algorithm to query whether s ∈ S:

1. for every i from 1 to k

2. if A[hi(s)] is 0 return ”s /∈ S”

3. return ”s ∈ S”

- Since hashing any string with any h ∈ H takes O(t) time in the worst case, the query algorithm takes
O(kt) time in the worst case.

1

http://fac.iitg.ac.in/rinkulu/

- The probability query algorithm outputs s ∈ S given s /∈ S is equal to probability all the k locations of
A probed by the query algorithm on behalf of s and hash functions inH are 1 while s /∈ S . From (1), the
latter is equal to (1− (1− 1

n)
km)k, which is approximately (1− e−km/n)k, since (1− x) ≤ e−x for any

x ∈ R. ——- (2)

Since the preprocessing algorithm sets A[h(si)] to 1 for every h ∈ H and every si ∈ S, all entries probed
by the query algorithm for input s are guaranteed to be 1 for any s ∈ S . Hence, the probability query
algorithm outputs s /∈ S given s ∈ S is 0.

- To minimize the error probability by choosing the right k in (2), we equate d
dk (k ln (1− e−km/n)) to 0.

This leads to k = (ln 2)(n
m).

Substituting k in (2), the probability of error when query string s ∈ S is, (1−e− ln 2)(ln 2) n
m ≈ (0.6185)n/m.

Significantly, as n/m increases, the probability of error falls exponentially. Note that n/m is the number
of bits in fingerprint A per string in S .

- When the fingerprint size n is chosen as O(m),

the number k of hash functionsH is a constant,

preprocessing algorithm takes O(mt) time,

fingerprint A computed after preprocessing S consumes O(m) bits,

the query time is a constant if t is a constant (since k is a constant), and

for any string s input to query algorithm,

if s ∈ S query algorithm answers correctly, and

if s /∈ S query algorithm errs with a constant probability (since k is a constant).

2

