Hybrid Beamforming using Machine Learning

A JOINT WORK WITH DR. ARGHYADIP ROY &

PROF. RATNAJIT BHATTACHARJEE

CELLULAR COMMUNICATIONS

- What comprises a cellular system?
 - Base stations
 - Users
- Any user willing to communicate to another

locates the nearest base station which connects it

to the other user.

- Communication happens via the base stations.
- Focus: link between users and the base station.

OMNIDIRECTIONAL AND DIRECTIONAL COMMUNICATIONS

• Communication using 4G spectrum exploits both non-directional and directional techniques.

DIRECTIONAL COMMUNICATIONS

- 5G targets multi-Gbps data rates; 4G bandwidths aren't enough.
- Millimeter-wave frequencies (30-300GHz) are being adopted to achieve these data rates.
- High attenuation at these frequencies; non-directional communication not a feasible choice.
- What is possible?
 - Directional communications using massive-MIMO systems or **beamforming**.
- massive-MIMO: high-dimensional arrays
- Beamforming is used to direct signals from

multiple antennas in desired directions.

Beamforming increases transmit power in intended
 directions; increases communication range.

DIGITAL BEAMFORMING

- Conventionally, beamforming is done digitally at baseband.
- This requires analog signals received at antenna terminals to be converted to digital data.
- Each antenna is fitted with an RF chain for this purpose.

HYBRID BEAMFORMING & MILLIMETER-WAVE

- To lower the number of RF chains, hybrid beamforming is implemented whereby each RF chain is connected to a multitude of antenna elements via RF phase shifters.
- The design of an efficient hybrid beamforming system revolves around three important aspects
 - > Hardware efficiency (associated cost and power) of the required hardware at mmWave frequencies
 - Computational Efficiency of the beamforming algorithm
 - Spectral Efficiency achieved by the system

A HYBRID BEAMFORMING SYSTEM

- F_{BB} Baseband Precoder
- F_{RF} RF Precoder
- *PA* Power Amplifier
- *ADC* Analog to Digital Converter
- *DAC* Analog to Digital Converter

CONVENTIONAL APPROACH

- Currently deployed 5G systems uses a static policy.
- Involves a beam scanning process scheduled every T seconds; T varies between 20ms to 160ms.

Figure: a beam scan determines the best transmitter (left) and receiver (right) beams so as to maximize spectral efficiency

- A beam scan translates to an exhaustive search over all transmitter(tx)-receiver(rx) beams to select beams with good alignment.
- High computational complexity and high signaling overhead.

BEAM MANAGEMENT AND AI

machine learning approaches for beam management in mmwave channels

supervised learning approach

Data driven, deterministic setting, requires channel state information (CSI), ideal for low mobility scenarios

reinforcement learning approach

Works on the fly, CSI not needed, low computational complexity, incorporates the stochasticity in mmWave channels

SUPERVISED LEARNING APPROACH

- Involves a training phase to generate a look-up table to select beams given a particular channel state.
- Removes the need for an exhaustive search across all beams.
- Does not require a singular-valued decomposition (SVD) of the channel matrix to determine the precoders.

LOW OVERHEAD BEAM SWITCHING ALGORITHM

- Proposed Algorithm: low-overhead Beam Switching Algorithm (LO-BSA).
- Reduces computational complexity by controlling the number of beam switches.
- The parameter *f* represents the percentage of times the algorithm opts for a beam change.
- 0 < Th < 1 is a pre-set value.

LOW OVERHEAD BEAM SWITCHING ALGORITHM

Algorithm 1 Low Overhead Beam-Switching Algorithm

- 1: procedure $Training(V, \mathcal{H}, P, N_s, T)$ Initialize $Q(H_t, v) = 0 \ \forall H_t \in \mathcal{H}, v \in V \text{ and } t \leftarrow 1.$ 2:
- while $t \le T$ do 3:
- Observe channel state H_t at time t. 4:
- $Q(H_t, v) \leftarrow \eta, \forall v \in V$ where η is given by. 5:
- $t \leftarrow t + 1$. 6:
- end while 7:
- 8: end procedure
- 9: procedure $RF_Pre_Sel(Q, H, P, N_s, Th)$
- Initialize threshold Th, c_i , n_i . 10:
- if $c_i/n_i < Th$ then 11:
- $c_i \leftarrow c_i + 1, n_i \leftarrow n_i + 1.$ 12:
- Observe current channel H13:
- $H \leftarrow \operatorname{argmin}_{\bar{H} \in \mathcal{H}} \|H H\|_2$. 14:
- $\{F_{BF}, W_{BF}\} \leftarrow \mathbf{v}, \text{ where } \mathbf{v} = \operatorname{argmax} Q(\tilde{H}, v).$ 15:
- $H = U\Sigma V^*, U = [U_1U_2], V = [V_1V_2], \text{ where } U_1 \in \mathbb{C}^{N_r \times N_s}$ 16: $V_1 \in \mathbb{C}^{N_t \times N_s}$ $F_{opt} \leftarrow V_1$ and $W_{opt} \leftarrow U_1$. 17:
- $i_{BB} \leftarrow (i_{RF}^H i_{RF})^{-1} i_{RF}^H i_{opt}, i \in \{F, W\}.$ $i_{BB} \leftarrow \sqrt{N_s} (i_{BB} / \|i_{RF} i_{BB}\|_F).$ 18:19:
- Save matrices $F_{RF}, F_{BB}, W_{BF}, W_{BB}$ in buffer. 20:
- return $F_{RF}, F_{BB}, W_{RF}, W_{BB}$. 21:
- 22:else
- **load** $F_{BF}, F_{BB}, W_{BF}, W_{BB}$ from buffer. 23:
- $n_i \leftarrow n_i + 1.$ 24:end if
- 25:
- 26: end procedure

- Norm-2 difference of current channel matrix and stored data is opted to determine the nearest channel.
- SVD is performed to determine the optimal beamforming vectors/precoders.
- For the single-user case considered in our simulations, these computations may be further avoided.
- For multiuser cases, the SVD calculations may be also exploited to compare a few singular vectors instead of a norm-2 difference.

PERFORMANCE COMPARISON (ESA VS LO-BSA)

- ESA searches among the beam-pairs of tx and rx beams that are adjacent to the current beams.
- The number of computations/flops for ESA f_{ESA} is a constant; $f_{ESA} = 2817828$.
- The number of flops in LO_BSA is $f_{lo-BSA}(Th) \approx$ $Th \times 2868412 + (1 - Th) \times 11.$
- Huge reduction in computational complexity
- marginal compromise in spectral efficiency.

REINFORCEMENT LEARNING APPROACH

- With no channel statistics available, the beam selection problem can be formulated as a Multi-Armed Bandit (MAB) problem.
- Each arm represents an action a pair of transmitter and receiver beams.
- We propose a reinforcement learning (RL) algorithm to select the optimal beam-pair in the long run and avoid repeated beam-scanning.

• Thompson Sampling based algorithm: select the arms at discrete slots to maximize the spectral efficiency of the system.

THOMPSON SAMPLING-BASED BEAM SELECTION

(1) The beams selected by the algorithm at the base station (BS) are communicated to the user equipment (UE)

(2) The UE responds by transmitting a reference signal on the selected beams.

(3) Based on the reference signal received power (RSRP), the BS updates the parameters to be used in the next time slot.

Fig: Summary of operations in a time slot

Algorithm 1 Thompson Sampling

- 1: for t = 1, 2, ..., T do
- 2: Step 1a. Sample each arm
- 3: $\bar{s}_t \sim \mathcal{N}(\bar{\mu}_t, \bar{\sigma}_t).$
- 4: Step 1b. Select best arm
- 5: $\beta \leftarrow \underset{b \in \mathcal{B}}{\operatorname{arg\,max}} \bar{s}_t.$
- 6: Step 2. Observe SNR r for β
- 7: Step 3. Update $\mu_{t+1}(\beta), \sigma_{t+1}(\beta)$ using

8:
$$\mu_{t+1}(i) = \frac{r + \mu_t(i) / \sigma_t(i)}{1 + 1 / \sigma_t(i)}$$
,
9: $\sigma_{t+1}(i) = \frac{1}{1 + 1 / \sigma_t(i)}$

9. $O_{t+1}(i) = \frac{1}{1+1/\sigma_t(i)}$

10: **end for**

THOMPSON SAMPLING-BASED BEAM SELECTION

- Performance may degrade due to temporal variations or when a mobile user moves out of coverage of the current beam.
- A beam-grouping based strategy is adopted to avoid beam failure and converge fast to the optimal action.

- The performance of the modified TS algorithm is compared against an exhaustive search algorithm that determines the optimal action at each time-slot.
- The algorithm works with minimal control signaling while achieving a spectral efficiency comparable to that of the exhaustive search algorithm.

PERFORMANCE OF PROPOSED RL ALGORITHM

PERFORMANCE OF PROPOSED RL ALGORITHM (SLOT DURATION: 5MS)

PERFORMANCE OF PROPOSED RL ALGORITHM (SLOT DURATION: 10MS)

CONCLUSION

• The proposed algorithm runs two TS entities alternately to address the beam selection in changing channel conditions.

• This gives us a T-element policy consisting of arms a_t selected at time-slots $t = \{1, ..., T\}$.

• Target: maximize *T* to prolong an additional IA procedure.

QUESTIONS?

