MA 102 (Multivariable Calculus)

IIT Guwahati

Date: March 15, 2013

Tutorial Sheet No. 3

R. Alam

Partial and directional derivatives, differentiability

- (1) The kinetic energy of an object with a constant mass m and position $\mathbf{r}(t) \in \mathbb{R}^n$ at time $t \in \mathbb{R}$ is defined to be $K(t) := \frac{1}{2}mv^2(t)$, where $v(t) := \|\mathbf{r}'(t)\|$. Determine K'(t).
- (2) Find the unit tangent vector to $\mathbf{r}(t) = (e^t, 2t, 2e^{-t})$. Also find the speed of a moving object with position $\mathbf{r}(t) = (3\sin(2t), 5\cos(2t), 4\sin(2t))$ in feet at time $t \in \mathbb{R}$ in seconds.
- (3) The angular momentum of a particle with position $\mathbf{r}(t) \in \mathbb{R}^3$ at time $t \in \mathbb{R}$ and a constant mass m is $\mathbf{L}(t) := m(\mathbf{r}(t) \times \mathbf{v}(t))$, where $\mathbf{v}(t)$ is the velocity and $\mathbf{r} \times \mathbf{v}$ is the cross product of \mathbf{r} and \mathbf{v} . Show that $\mathbf{L}'(t) = m(\mathbf{r}(t) \times \mathbf{a}(t))$, where $\mathbf{a}(t)$ is the acceleration.
- (4) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and $f(x,y) = \frac{xy}{x^2 + y^2}$. Show that f is not continuous at (0,0) but the partial derivatives of f exist on \mathbb{R}^2 . Show that the partial derivatives are not continuous at (0,0).
- (5) Let $f: U \subset \mathbb{R}^2 \to \mathbb{R}$, where U is open. If the first order partial derivatives of f exist on U and are bounded then show that f is continuous on U.
- (6) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$.

Show that f is continuous at (0,0) and the partial derivatives of f exist but are not bounded in any disc (howsoever small) around (0,0).

- (7) Let $f : \mathbb{R}^2 \to \mathbb{R}$. If $f_x(x, y) = 0 = f_y(x, y)$ for all $(x, y) \in \mathbb{R}^2$ then show that f is a constant function.
- (8) Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 = g(0,0) and, for $(x,y) \neq (0,0)$,

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}, \qquad g(x,y) = \frac{\sin^2(x+y)}{|x| + |y|}.$$

Examine differentiability and the existence of partial and directional derivatives of f and g at (0,0).

- (9) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = 0 if y = 0 and and $f(x, y) = \frac{y}{|y|}\sqrt{x^2 + y^2}$, if $y \neq 0$. Show that f is continuous at (0, 0), $D_u f(0, 0)$ exists for all unit vector u but f is not differentiable at (0, 0).
- (10) Find the directional derivative of $f(x, y) = y^3 2x^2 + 3$ at the point (1, 2) in the direction of $u := \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Also, find the directional derivative of $f(x, y) = \log(x^2 + y^2)$ at (1, -3) in the direction of u := (2, -3). **P.T.O**

- (11) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable at (0,0). Suppose that for u := (3/5,4/5) and $v := (1/\sqrt{2}, 1/\sqrt{2})$, we have $D_u f(0,0) = 12$ and $D_v f(0,0) = -4\sqrt{2}$. Then determine $f_x(0,0)$ and $f_y(0,0)$.
- (12) Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Suppose that $\partial_i f(x, y)$ exists and g is differentiable at f(x, y). Show that $\partial_i (g \circ f)(x, y)$ exists and $\partial_i (g \circ f)(x, y) = g'(f(a))\partial_i f(x, y)$.
- (13) Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable. Using chain rule determine the partial derivatives of $f: \mathbb{R}^2 \to \mathbb{R}$ given by

 $(i)f(x,y) := g(xy^2 + 1), \quad (ii)f(x,y) := g(4x + 7y), \quad (iii)f(x,y) := g(x - y).$

Also, examine differentiability of f and determine the derivative, if it exists.

(14) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}^2$ and suppose that $\nabla f(a) \neq 0$. Show that the maximum value of the directional derivative $D_u f(a)$ is $\|\nabla f(a)\|$ and is attained in the direction of $\nabla f(a)$ with $u = \nabla f(a) / \|\nabla f(a)\|$. Also show that the minimum value of $D_u f(a)$ is $-\|\nabla f(a)\|$ and is attained in the direction of $-\nabla f(a)$.