MA 102 (Multivariable Calculus)

IIT Guwahati

Date: March 1, 2013

Tutorial Sheet No. 1

R. Alam

The Euclidean space \mathbb{R}^n , Norms, convergence of sequences in \mathbb{R}^n ,

(1) Consider the Euclidean norm $\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_n^2}$ and show that $\|\|\mathbf{x}\| - \|\mathbf{y}\|\| \le \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that the vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if

 $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$

- (2) Let $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be such that (a) $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = 0$, (b) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, (c) $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, and (d) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$. The function $\langle \cdot, \cdot \rangle$ is called an innerproduct on \mathbb{R}^n . Define $\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for $\mathbf{x} \in \mathbb{R}$. Show that $p(t) := \|\mathbf{x} + t\mathbf{y}\|^2 \ge 0$ for all $t \in \mathbb{R}$ and hence prove the Cauchy-Schwarz inequality $|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that the equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Show also that $\|\cdot\|$ is a norm on \mathbb{R}^n .
- (3) Show that $\|\mathbf{x}\|_1 := |x_1| + \dots + |x_n|, \|\mathbf{x}\| := \sqrt{|x_1|^2 + \dots + |x_n|^2}$, and $\|\mathbf{x}\|_{\infty} := \max\{|x_1|, \dots, |x_n|\}$ are norms on \mathbb{R}^n . Let (\mathbf{x}_k) be a sequence in \mathbb{R}^n and $\mathbf{x} \in \mathbb{R}^n$. Show that (\mathbf{x}_k) converges to \mathbf{x} w.r.t. $\|\cdot\|_1 \iff (\mathbf{x}_k)$ converges to \mathbf{x} w.r.t. $\|\cdot\| \iff (\mathbf{x}_k)$ converges to \mathbf{x} w.r.t. $\|\cdot\|$
- (4) Let $(\mathbf{x}_k) \subset \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. Show that $\mathbf{x}_k \to \mathbf{x}$ in \mathbb{R}^n if and only if for every $\mathbf{y} \in \mathbb{R}^n$ the sequence $(\langle \mathbf{x}_k, \mathbf{y} \rangle) \subset \mathbb{R}$ converges to $\langle \mathbf{x}, \mathbf{y} \rangle$, that is, $\langle \mathbf{x}_k, \mathbf{y} \rangle \to \langle \mathbf{x}, \mathbf{y} \rangle$ in \mathbb{R} .
- (5) Let $(\mathbf{x}_k) \subset \mathbb{R}^n$ be such that $\mathbf{x}_k \to \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$. Show that the sequence $(||\mathbf{x}_k||) \subset \mathbb{R}$ converges to $||\mathbf{x}||$. Additionally suppose that $\mathbf{x} \neq 0$ and $\mathbf{x}_k \neq 0$ for all k, and define $\mathbf{y}_k := \mathbf{x}_k / ||\mathbf{x}_k||$ and $\mathbf{y} := \mathbf{x} / ||\mathbf{x}||$. Show that $\mathbf{y}_k \to \mathbf{y}$.
- (6) Let $(\mathbf{x}_k) \subset \mathbb{R}^n$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Suppose that $\mathbf{x}_k \to \mathbf{x}$ and that $\langle \mathbf{x}_k, \mathbf{y} \rangle = 0$ for all k. Show that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- (7) Let $\alpha \in (0,1)$ and let $\mathbf{x}_n = (n^3 \alpha^n, \frac{1}{n}[n\alpha])$ for all $n \in \mathbb{N}$. (For each $x \in \mathbb{R}$, [x] denotes the greatest integer not exceeding x.) Examine whether the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 . Also, find $\lim_{n \to \infty} \mathbf{x}_n$ if it exists.
- (8) (Bolzano-Weierstrass Theorem) Let $(\mathbf{x}_n) \subset \mathbb{R}^2$ be bounded. Show that (\mathbf{x}_n) has a subsequence that converges in \mathbb{R}^2 .
- (9) (Heine-Borel Theorem) Let $S \subset \mathbb{R}^n$. Show that S is compact if and only if S is bounded and closed in \mathbb{R}^n .
- (10) Let $(\mathbf{x}_k) \subset \mathbb{R}^n$ be such that $\mathbf{x}_k \to \mathbf{x}$ and that $\|\mathbf{x}\| = r > 0$. Show that there exists $p \in \mathbb{N}$ such that $\|\mathbf{x}_k\| > r/2$ for all $k \ge p$.