IITG: MA-102 (2013)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Rafikul Alam

Lecture 8: Maxima and Minima

Department of Mathematics IIT Guwahati

Rafikul Alam

Local extremum of $f : \mathbb{R}^n \to \mathbb{R}$

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be continuous, where U is open. Then

- f has a local maximum at \mathbf{p} if there exists r > 0 such that $f(\mathbf{x}) \leq f(\mathbf{p})$ for $\mathbf{x} \in B(\mathbf{p}, r)$.
- f has a local minimum at **a** if there exists $\epsilon > 0$ such that $f(\mathbf{x}) \ge f(\mathbf{p})$ for $\mathbf{x} \in B(\mathbf{p}, \epsilon)$.

A local maximum or a local minimum is called a local extremum.

- ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ ○

(ロ) (同) (E) (E) (E)

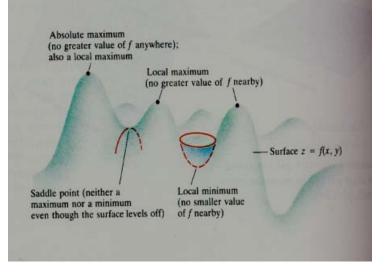


Figure: Local extremum of z = f(x, y)

Rafikul Alam

Necessary condition for extremum of $\mathbb{R}^n \to \mathbb{R}$

Critical point: A point $\mathbf{p} \in U$ is a critical point of f if

 $\nabla f(\mathbf{p}) = 0.$

Thus, when f is differentiable, the tangent plane to $z = f(\mathbf{x})$ at $(\mathbf{p}, f(\mathbf{p}))$ is horizontal.

Theorem: Suppose that f has a local extremum at \mathbf{p} and that $\nabla f(\mathbf{p})$ exists. Then \mathbf{p} is a critical point of f, i.e, $\nabla f(\mathbf{p}) = \mathbf{0}$.

Example: Consider $f(x, y) = x^2 - y^2$. Then $f_x = 2x = 0$ and $f_y = -2y = 0$ show that (0, 0) is the only critical point of f. But (0, 0) is not a local extremum of f.

Saddle point

Saddle point: A critical point of f that is not a local extremum is called a saddle point of f.

Examples:

- The point (0,0) is a saddle point of $f(x,y) = x^2 y^2$.
- Consider $f(x, y) = x^2y + y^2x$. Then $f_x = 2xy + y^2 = 0$ and $f_y = 2xy + x^2 = 0$ show that (0, 0) is the only critical point of f.

But (0,0) is a saddle point. Indeed, on y = x, f is both positive and negative near (0,0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Sufficient condition for extremum of $f : \mathbb{R}^2 \to \mathbb{R}$

Theorem: Let $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ be C^2 and $\mathbf{p} \in U$ be a critical point, i.e, $f_x(\mathbf{p}) = 0 = f_y(\mathbf{p})$. Let

$$D := \det\left(\left[\begin{array}{cc} f_{xx}(\mathbf{p}) & f_{xy}(\mathbf{p}) \\ f_{yx}(\mathbf{p}) & f_{yy}(\mathbf{p}) \end{array}\right]\right) = f_{xx}(\mathbf{p})f_{yy}(\mathbf{p}) - f_{xy}^2(\mathbf{p}).$$

- If $f_{xx}(\mathbf{p}) > 0$ and D > 0 then f has a local minimum at \mathbf{p} .
- If $f_{xx}(\mathbf{p}) < 0$ and D > 0 then f has a local maximum at \mathbf{p} .
- If D < 0 then **p** is a saddle point.
- If D = 0 then nothing can be said.

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ○ Q ()

Example

Find the minimum distance from the point (1, 2, 0) to the cone $z^2 = x^2 + y^2$.

We minimize the square of distance

$$d^{2} = (x-1)^{2} + (y-2)^{2} + z^{2}$$

= $(x-1)^{2} + (y-2)^{2} + x^{2} + y^{2}$
= $2x^{2} + 2y^{2} - 2x - 4y + 5.$

Consider $f(x, y) := 2x^2 + 2y^2 - 2x - 4y + 5$. Then $f_x = 4x - 2$ and $f_y = 4y - 4 \Rightarrow p := (1/2, 1)$ is the critical point.

Now
$$D = f_{xx}(p)f_{yy}(p) - f_{xy}^2(p) = 16 > 0$$
 and $f_{xx}(p) = 4 > 0$
 $\Rightarrow f(p)$ is the minimum $\Rightarrow d = \sqrt{f(p)} = \sqrt{5/2}$.

Proof of sufficient condition for extremum

Write $H_f(\mathbf{p}) > 0$ to denote $f_{xx}(\mathbf{p}) > 0$ and $D(\mathbf{p}) > 0$, where $H_f(\mathbf{p}) := \begin{bmatrix} f_{xx}(\mathbf{p}) & f_{xy}(\mathbf{p}) \\ f_{yx}(\mathbf{p}) & f_{yy}(\mathbf{p}) \end{bmatrix}$ and $D(\mathbf{p}) := f_{xx}(\mathbf{p})f_{yy}(\mathbf{p}) - f_{xy}^2(\mathbf{p})$.

Then

1.
$$H_f(\mathbf{p}) > 0 \Rightarrow H_f(\mathbf{p} + \mathbf{h}) > 0$$
 for $\|\mathbf{h}\| < \epsilon$.

2. $H_f(\mathbf{p}) > 0 \Rightarrow \langle H_f(\mathbf{p})\mathbf{h}, \mathbf{h} \rangle > 0$ for all $\mathbf{h} \neq 0$. Indeed,

3. By EMVT there exists $0 < \theta < 1$ such that $f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) = \frac{1}{2} \langle H_f(\mathbf{p} + \theta \mathbf{h}) \mathbf{h}, \mathbf{h} \rangle > 0.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

Sufficient condition for extremum of $f : \mathbb{R}^n \to \mathbb{R}$

Theorem: Let $f : U \subset \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\mathbf{p} \in U$ be a critical point, i.e, $\nabla f(\mathbf{p}) = \mathbf{0}$. Consider the Hessian

$$H_f(\mathbf{p}) := \begin{bmatrix} \partial_1 \partial_1 f(\mathbf{p}) & \cdots & \partial_n \partial_1 f(\mathbf{p}) \\ \vdots & \cdots & \vdots \\ \partial_1 \partial_n f(\mathbf{p}) & \cdots & \partial_n \partial_n f(\mathbf{p}) \end{bmatrix}$$

- If H_f(**p**) > 0 (positive definite) then f has a local minimum at **p**.
- If H_f(**p**) < 0 (negative definite) then f has a local maximum at **p**.
- If $H_f(\mathbf{p})$ indefinite then \mathbf{p} is a saddle point.
- If det $H_f(\mathbf{p}) = 0$ then nothing can be said.

Positive definite matrix

Let A be a symmetric matrix of size n. Then A is said to be

- positive definite (A > 0) if $x^{\top}Ax > 0$ for nonzero $x \in \mathbb{R}^n$,
- negative definite (A < 0) if $x^{\top}Ax < 0$ for nonzero $x \in \mathbb{R}^n$,
- indefinite if det(A) $\neq 0$ and there exits $x, y \in \mathbb{R}^n$ such that $x^\top A x > 0$ and $y^\top A y < 0$.

Fact: If A > 0 then there exists $\alpha > 0$ such that

$$x^{\top}Ax \ge \alpha \|x\|^2$$
 for all $x \in \mathbb{R}^n$.

Proof: $S := \{x \in \mathbb{R}^n : ||x|| = 1\}$ compact and $f(x) := x^\top A x$ continuous $\Rightarrow \alpha := f(x_{\min}) = \min_{u \in S} f(u) > 0$.

Characterization of positive definite matrices

Fact: Let A_j denote the leading *j*-by-*j* principal sub-matrix of A for j = 1, 2, ..., n. Thus det (A_j) is the *j*-th principal minor.

Then

- $A > 0 \iff \det(A_j) > 0$ for j = 1, 2, ..., n, \iff eigenvalues of A are positive.
- $A < 0 \iff \det(A_j) < 0$ for j = 1, 2, ..., n, \iff eigenvalues of A are negative.
- A is indefinite ⇐⇒ det(A) ≠ 0 and A has positive and negative eigenvalues.

Proof of sufficient condition for extremum of $f : \mathbb{R}^n \to \mathbb{R}$

Since f is C^2 , we have

$$f(\mathbf{p} + \mathbf{h}) = f(\mathbf{p}) + \nabla f(\mathbf{p}) \bullet \mathbf{h} + \frac{1}{2}\mathbf{h} \bullet (H_f(\mathbf{p})\mathbf{h}) + e(\mathbf{h}) \|\mathbf{h}\|^2,$$

where $e(\mathbf{h}) \rightarrow 0$ as $\mathbf{h} \rightarrow 0$.

- 1. $H_f(\mathbf{p}) > 0 \Rightarrow \mathbf{h} \bullet (H_f(\mathbf{p})\mathbf{h}) \ge \alpha \|\mathbf{h}\|^2$ for some $\alpha > 0$.
- 2. There exists $\delta > 0$ such that $\|\mathbf{h}\| < \delta \Rightarrow |e(\mathbf{h})| < \alpha/4$.
- 3. $f(\mathbf{p} + \mathbf{h}) f(\mathbf{p}) = \frac{1}{2}\mathbf{h} \bullet (H_f(\mathbf{p})\mathbf{h}) + e(\mathbf{h}) \|\mathbf{h}\|^2 \ge \frac{\alpha}{4} \|\mathbf{h}\|^2$ when $\|\mathbf{h}\| < \delta$.

Proof for saddle point of $f : \mathbb{R}^n \to \mathbb{R}$

If $H_f(\mathbf{p})$ is indefinite then there exists nonzero vectors \mathbf{u} and \mathbf{v} such that

$$\mathbf{u} \bullet (H_f(\mathbf{p})\mathbf{u}) > 0$$
 and $\mathbf{v} \bullet (H_f(\mathbf{p})\mathbf{v}) < 0$.

Then $\phi(t) := f(\mathbf{p} + t\mathbf{u})$ has minimum at t = 0 whereas $\psi(t) := f(\mathbf{p} + t\mathbf{v})$ has a maximum at t = 0. Indeed,

$$\phi''(\mathbf{0}) = \frac{\mathrm{d}^2 f(\mathbf{p} + t\mathbf{u})}{\mathrm{d}t^2}|_{t=0} = \mathbf{u} \bullet (H_f(\mathbf{p})\mathbf{u}) > 0$$

and

$$\psi''(0) = \frac{\mathrm{d}^2 f(\mathbf{p} + t\mathbf{v})}{\mathrm{d}t^2}|_{t=0} = \mathbf{v} \bullet (H_f(\mathbf{p})\mathbf{v}) < 0.$$

Example

Find the maxima, minima and saddle points of $f(x, y) := (x^2 - y^2)e^{-(x^2 + y^2)/2}$. We have

$$f_x = [2x - x(x^2 - y^2)]e^{-(x^2 + y^2)/2} = 0,$$

$$f_y = [-2y - y(x^2 - y^2)]e^{-(x^2 + y^2)/2} = 0,$$

so the critical points are (0,0), $(\pm\sqrt{2},0)$ and $(0,\pm\sqrt{2})$.

Point	f_{xx}	f_{xy}	f_{yy}	D	Туре —
(0,0)	2	0	-2	-4	saddle
$(\sqrt{2}, 0)$	-4/e	0	-4/e	$16/e^{2}$	maximum
$(-\sqrt{2},0)$	-4/e	0	-4/e	$16/e^{2}$	maximum
$(0,\sqrt{2})$	4/ <i>e</i>	0	4/ <i>e</i>	$16/e^{2}$	minimum
$(0, -\sqrt{2})$	4/ <i>e</i>	0	4/ <i>e</i>	$16/e^{2}$	minimum

Example: global extrema

Find global maximum and global minimum of the function $f: [-2,2] \times [-2,2] \rightarrow \mathbb{R}$ given by $f(x,y) := 4xy - 2x^2 - y^4$.

To find global extrema, find extrema of f in the interior and then on the boundary.

Solving $f_x = 4y - 4x = 0$ and $f_y = 4x - 4y^3 = 0$ we obtain the critical points (0,0), (1,1) and (-1,-1). We have f(1,1) = f(-1,-1) = 1. (0,0) is a saddle point.

For the boundary, consider f(x, 2), f(x, -2), f(2, y), f(-2, y)and find their extrema on [-2, 2]. The global minimum is attained at (2, -2) and (-2, 2) with f(2, -2) = -40. The global maximum is attained at (1, -1) and (-1, 1).

*** End ***