Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Rafikul Alam Department of Mathematics IIT Guwahati

・ 同 ト ・ ヨ ト ・ ヨ ト

Chain rule

Theorem-A: Let $\mathbf{x} : \mathbb{R} \to \mathbb{R}^n$ be differentiable at t_0 and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} := \mathbf{x}(t_0)$. Then $f \circ \mathbf{x}$ is differentiable at t_0 and

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x})|_{t=t_0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(t_0) = \sum_{i=1}^n \partial_i f(\mathbf{a}) \frac{\mathrm{d}x_i(t_0)}{\mathrm{d}t}.$$

Proof: Use

 $f(\mathbf{x}(t)) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet (\mathbf{x}(t) - \mathbf{x}(t_0)) + e(\mathbf{x}) \|\mathbf{x} - \mathbf{a}\|$

and the fact that $e(\mathbf{x}(t)) \rightarrow 0$ as $t \rightarrow 0$.

・ 同 ト ・ ヨ ト ・ 日 ト …

I nar

Chain rule for partial derivatives

Theorem-B: If $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^n$ has partial derivatives at (a, b)and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{p} := \mathbf{x}(a, b)$ then

$$\partial_{u}f(\mathbf{p}) = \nabla f(\mathbf{p}) \bullet \partial_{u}\mathbf{x}(a,b) = \sum_{j=1}^{n} \frac{\partial_{j}f(\mathbf{p})}{\partial x_{j}} \frac{\partial x_{j}(a,b)}{\partial u},$$

$$\partial_{v}f(\mathbf{p}) = \nabla f(\mathbf{p}) \bullet \partial_{v}\mathbf{x}(a,b) = \sum_{j=1}^{n} \frac{\partial_{j}f(\mathbf{p})}{\partial x_{j}} \frac{\partial x_{j}(a,b)}{\partial v}.$$

Proof: Apply Theorem-A.

Example: Find $\partial w/\partial u$ and $\partial w/\partial v$ when $w = x^2 + xy$ and $x = u^2v$, $y = uv^2$.

くぼう くほう くほう

Mean Value Theorem

Theorem: Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Then there exists $\mathbf{c} \in [\mathbf{a}, \mathbf{b}]$ such that

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \bullet (\mathbf{b} - \mathbf{a}),$$

where $[\mathbf{a}, \mathbf{b}] := {\mathbf{a}(1-t) + t\mathbf{b} : t \in [0,1]}$ is the line segment joining \mathbf{a} and \mathbf{b} .

Proof: Consider $\phi(t) := f(\mathbf{a}(1-t) + t\mathbf{b})$ for $t \in [0, 1]$ and invoke chain rule.

Total derivative

Let $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \bullet \mathbf{x}'(t) = \sum_{i=1}^n \partial_i f(\mathbf{x}) \frac{\mathrm{d}x_i}{\mathrm{d}t}$$

is called total derivative of f.

Example: Consider
$$f(x, y) := x^2 - y^2$$
 and
 $(x(t), y(t)) := (\sin(t), \cos(t))$. Then
 $\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}) \bullet \mathbf{x}'(t) = (2x, -2y) \bullet (\cos t, -\sin t)$
 $= 2\sin(t)\cos(t) + 2\cos(t)\sin(t) = 2\sin(2t)$.

・ロト ・回ト ・ヨト ・ヨト

= 990

Differential

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then

$$\mathrm{d}f = \sum_{i=1}^n \partial_i f(\mathbf{a}) \mathrm{d}x_i$$

is called differential of f at \mathbf{a} .

For n = 1 this gives familiar differential df = f'(a)dx.

Question: What is df? What does it represent?

Well, $df = Df(\mathbf{a})$, the derivative map. The differential df is a fancy way of writing the derivative map

$$Df(\mathbf{a}): \mathbb{R}^n \to \mathbb{R}, \mathbf{h} \mapsto \nabla f(\mathbf{a}) \bullet \mathbf{h}.$$

▲御 → ▲ 注 → ▲ 注 → … 注

Differential = Derivative map

Define coordinate projection $dx_i : \mathbb{R}^n \to \mathbb{R}$ by $dx_i(\mathbf{h}) = h_i$. Then

$$Df(\mathbf{a})\mathbf{h} = \nabla f(\mathbf{a}) \bullet \mathbf{h} = \sum_{j=1}^{n} \partial_{j} f(\mathbf{a}) h_{j}$$
$$= \sum_{j=1}^{n} \partial_{j} f(\mathbf{a}) dx_{j}(\mathbf{h}) = df(\mathbf{h}).$$

Hence $Df(\mathbf{a}) = \sum_{i=1}^{n} \partial_i f(\mathbf{a}) dx_i = df$.

Bottomline: The differential df at **a** denotes $Df(\mathbf{a})$ when $Df(\mathbf{a})$ is expressed in terms of the partial derivatives $\partial_j f(\mathbf{a})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Differential and increament

Consider an increment $\Delta \mathbf{x} = (\Delta x_1, \dots, \Delta x_n) \in \mathbb{R}^n$ and define

$$\Delta f(\Delta \mathbf{x}) := f(\mathbf{a} + \Delta \mathbf{x}) - f(\mathbf{a}).$$

Then

$$\Delta f(\Delta \mathbf{x}) = \mathrm{d} f(\Delta \mathbf{x}) + e(\Delta \mathbf{x}) \|\Delta \mathbf{x}\| \simeq \mathrm{d} f(\Delta \mathbf{x})$$

gives

$$\Delta f(\Delta \mathbf{x}) \simeq \mathrm{d} f(\Delta \mathbf{x}) = \sum_{j=1}^n \partial_j f(\mathbf{a}) \mathrm{d} x_j(\Delta \mathbf{x}) = \sum_{j=1}^n \partial_j f(\mathbf{a}) \Delta x_j$$

Increment of f at $\mathbf{a} \simeq \text{sum}$ of scaled increments of the components of \mathbf{a} .

Level sets

Let $f : \mathbb{R}^n \to \mathbb{R}$. Then $G(f) := \{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$ is the graph of f. G(f) represents a curve/surface in \mathbb{R}^{n+1} .

The set $S(f, \alpha) := {\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = \alpha}$ is called a level set of f and represents a curve/surface in \mathbb{R}^n .

Examples:

- $f(x, y) := x^2 + y^2$. Then G(f) is a paraboloid in \mathbb{R}^3 and $S(f, \alpha)$ with $\alpha > 0$ is a circle in \mathbb{R}^2 .
- $f(x, y) := 4x^2 + y^2$. Then G(f) is an elliptic paraboloid in \mathbb{R}^3 and $S(f, \alpha)$ with $\alpha > 0$ is an ellipse in \mathbb{R}^2 .

Tangent plane to level sets

Equation of a hyperplane in \mathbb{R}^n passing through **a** and a normal vector **n** is given by $(\mathbf{x} - \mathbf{a}) \bullet \mathbf{n} = 0$.

Equation of a line in \mathbb{R}^n passing through **a** in the direction of **v** is given by $\mathbf{x} = \mathbf{a} + t\mathbf{v}$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$.

Let $\mathbf{x} : (-\delta, \delta) \to S(f, \alpha)$ be differentiable at 0 and $\mathbf{x}(0) = \mathbf{a}$. Then

$$\frac{\mathrm{d}f}{\mathrm{d}t}(\mathbf{a}) = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(0) = 0 \Rightarrow \nabla f(\mathbf{a}) \perp \mathbf{x}'(0).$$

 $\Rightarrow \mathbf{x}'(\mathbf{0})$ lies in the hyperplane $(\mathbf{x} - \mathbf{a}) \bullet \nabla f(\mathbf{a}) = \mathbf{0}$.

Tangent plane

Since the velocity $\mathbf{x}'(0)$ is tangent to the curve $\mathbf{x}(t)$ at \mathbf{a} , the hyperplane $(\mathbf{x} - \mathbf{a}) \bullet \nabla f(\mathbf{a}) = 0$ is tangent to the level set $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

Hence the line $\mathbf{x} = \mathbf{a} + t\nabla f(\mathbf{a})$ is normal to the level set $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

- $(x-a)f_x(a,b) + (y-b)f_y(a,b) = 0$ is the equation of the tangent line to $f(x,y) = \alpha$ at (a,b).
- $(x-a)f_x(a, b, c) + (y-b)f_y(a, b, c) + (z-c)f_z(a, b, c) = 0$ is the equation of the tangent plane to $f(x, y, z) = \alpha$ at (a, b, c).

Tangent to the graph

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$.

Define
$$g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$$
 by $g(\mathbf{x}, z) = f(\mathbf{x}) - z$. Then $S(g, 0) = G(f)$ and $\nabla g = (\nabla f, -1)$.

The tangent plane to S(g,0) = G(f) at $(\mathbf{a}, f(\mathbf{a}))$ is given by

$$(\mathbf{x} - \mathbf{a}, z - f(\mathbf{a})) \bullet (\nabla f(\mathbf{a}), -1) = 0$$

which gives $z = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$.

•
$$y = f(a) + f'(a)(x - a)$$
 is tangent to $y = f(x)$ at $(a, f(a))$.

•
$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$
 is tangent
to $z = f(x, y)$ at $(a, b, f(a, b))$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Differentiability of $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$

Definition: Let $U \subset \mathbb{R}^n$ be open. Then $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in U$ if there exists a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\mathbf{h}\to 0}\frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\mathcal{L}(\mathbf{h})\|}{\|\mathbf{h}\|}=0.$$

The linear map L is called the derivative of f at **a** and is denoted by $Df(\mathbf{a})$, that is, $L = Df(\mathbf{a})$.

Other notations: $f'(a), \frac{df}{dx}(a)$.

Characterization of differentiability

Theorem: Consider $f : \mathbb{R}^n \to \mathbb{R}^m$ with $f(\mathbf{x}) = (f_1(\mathbf{x}), \ldots, f_m(\mathbf{x}))$, where $f_i : \mathbb{R}^n \to \mathbb{R}$. Then f is differentiable at $\mathbf{a} \in \mathbb{R}^n \iff f_i$ is differentiable at \mathbf{a} for $i = 1, 2, \ldots, m$. Further

$$Df(\mathbf{a})\mathbf{h} = (\nabla f_1(\mathbf{a}) \bullet \mathbf{h}, \dots, \nabla f_m(\mathbf{a}) \bullet \mathbf{h}).$$

Proof: Blackboard.

The matrix of $Df(\mathbf{a})$ is called the Jacobian matrix of f at \mathbf{a} . Jacobian matrix is obtained by writing \mathbf{x} and $f(\mathbf{x})$ as column vectors.

Jacobian matrix of $f : \mathbb{R}^n \to \mathbb{R}^m$

The jacobian matrix
$$Df(\mathbf{a}) = \begin{bmatrix} -\nabla f_1(\mathbf{a})^\top - \\ \vdots \\ -\nabla f_m(\mathbf{a})^\top - \end{bmatrix}_{m \times n}$$
.

•
$$f(x,y) = (f_1(x,y), f_2(x,y), f_3(x,y))$$

$$Df(a,b) = \begin{bmatrix} \partial_x f_1(a,b) & \partial_y f_1(a,b) \\ \partial_x f_2(a,b) & \partial_y f_2(a,b) \\ \partial_x f_3(a,b) & \partial_y f_3(a,b) \end{bmatrix}$$

•
$$f(x, y, z) = (f_1(x, y), f_2(x, y))$$

$$Df(a, b, c) = \begin{bmatrix} \partial_x f_1(a, b, c) & \partial_y f_1(a, b, c) & \partial_z f_1(a, b, c) \\ \partial_x f_2(a, b, c) & \partial_y f_2(a, b, c) & \partial_z f_2(a, b, c) \end{bmatrix}$$

Examples

• If
$$f(x, y) = (xy, e^x y, \sin y)$$
 then

$$Df(x,y) = \begin{bmatrix} y & x \\ e^{x}y & e^{x} \\ 0 & \cos y \end{bmatrix}$$

• If
$$f(x, y, z) = (x + y + z, xyz)$$
 then

$$Df(x, y, z) = \begin{bmatrix} 1 & 1 & 1 \\ yz & xz & xy \end{bmatrix}$$

*** End ***

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ のへで