Lecture 4: Partial and Directional derivatives, Differentiability

Rafikul Alam Department of Mathematics IIT Guwahati

Differential Calculus

Task: Extend differential calculus to the functions:

Case I: $f: A \subset \mathbb{R}^n \to \mathbb{R}$

Case II: $f: A \subset \mathbb{R} \to \mathbb{R}^n$

Case III: $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$

Question: What does it mean to say that f is differentiable?

Parametric curve $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$

A continuous function $\mathbf{r}:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$ is called a parametric curve in \mathbb{R}^n . The curve $\Gamma:=\mathbf{r}([a,b])$ is parameterized by $\mathbf{r}(t)$.

Examples:

- $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$ given by $\mathbf{r}(t) := \mathbf{a} + t\mathbf{b}$ parameterizes a line in \mathbb{R}^n passing through \mathbf{a} in the direction of \mathbf{b} .
- $\mathbf{r}: [0, 2\pi] \to \mathbb{R}^3$ given by $\mathbf{r}(t) := (\cos t, \sin t, t)$ parameterizes a circular helix.
- $\mathbf{r}: [0, 2\pi] \to \mathbb{R}^2$ given by $\mathbf{r}(t) := (\cos t, \sin t)$ parameterizes the circle $x^2 + y^2 = 1$.

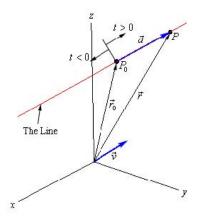


Figure: Line $\mathbf{r}(t) = \mathbf{p}_0 + t\mathbf{v}$

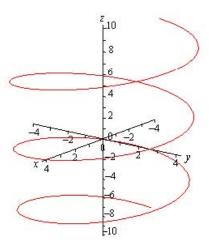


Figure: Helix $\mathbf{r}(t) = (4\cos t, 4\sin t, t)$

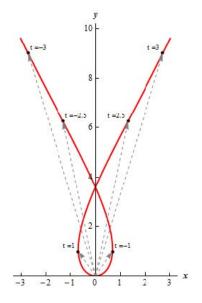


Figure: Plane curve $\mathbf{r}(t) = (t - 2\sin t, t^2)$

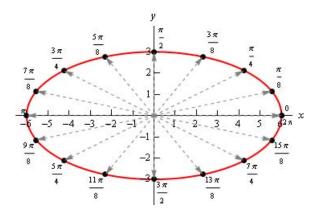


Figure: Ellipse $\mathbf{r}(t) = (6\cos t, 3\sin t)$

Differentiability of $\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$

Definition: Let $\mathbf{r}:(a,b)\subset\mathbb{R}\to\mathbb{R}^n$ and $t_0\in(a,b)$. If

$$\mathbf{r}'(t_0) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t_0) := \lim_{t \to t_0} \frac{\mathbf{r}(t) - \mathbf{r}(t_0)}{t - t_0}$$

exists then \mathbf{r} is differentiable at t_0 . The derivative $\mathbf{r}'(t_0)$ is called the velocity vector.

Fact:

- $\mathbf{r}(t) = (r_1(t), \dots, r_n(t))$, where $r_i : (a, b) \to \mathbb{R}$.
- **r** is differentiable at $t_0 \iff$ each r_i is differentiable at t_0 , $i=1,2,\ldots,n$. Further, $\mathbf{r}'(t_0)=(r_1'(t_0),\ldots,r_n'(t_0))$.
- **r** differentiable at $t_0 \Rightarrow$ **r** continuous at t_0 .

Sum and product rules

Fact: Let $f,g:(a,b)\subset\mathbb{R}\to\mathbb{R}^n$ be differentiable at $t_0\in(a,b)$. Then for $\alpha\in\mathbb{R}$

- 1. f + g and αf are differentiable at t_0 . Further, $(f + g)'(t) = f'(t_0) + g'(t_0)$ and $(\alpha f)'(t_0) = \alpha f'(t_0)$.
- 2. $f \bullet g$ defined by $(f \bullet g)(t) := \langle f(t), g(t) \rangle$ is differentiable at t_0 and

$$(f \bullet g)'(t_0) = f'(t_0) \bullet g(t_0) + f(t_0) \bullet g'(t_0).$$

Velocity and tangent vectors

Let $\mathbf{r}:(a,b)\to\mathbb{R}^n$ be differentiable. Then treating $\mathbf{r}(t)$ as the position of a moving object at time t, we have

scaled secant
$$=rac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
ightarrow\mathbf{r}'(t)$$
 as $\Delta t
ightarrow0.$

But scaled secant o tangent vector to the curve at ${f r}(t)$ as $\Delta t o 0$.

Thus velocity vector $\mathbf{v}(t) := \mathbf{r}'(t)$ is tangent to the curve at $\mathbf{r}(t)$.

If
$$\mathbf{r}(t) := (\cos t, \sin t)$$
 then $\mathbf{v}(t) = \mathbf{r}'(t) = (-\sin t, \cos t)$.

Partial derivatives of $f: \mathbb{R}^2 \to \mathbb{R}$

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $(a, b) \in \mathbb{R}^2$. Then

$$\frac{\partial f}{\partial x}(a,b) := \lim_{t\to 0} \frac{f(a+t,b)-f(a,b)}{t},$$

when exists, is called partial derivative of f at (a, b) w.r.t to the first variable.

Other notations for $\frac{\partial f}{\partial x}(a,b)$:

$$f_x(a,b), \ \partial_x f(a,b), \ \partial_1 f(a,b).$$

Partial derivative $\frac{\partial f}{\partial y}(a, b)$ w.r.t. the second variable is defined similarly.

Partial derivatives of $f: \mathbb{R}^n \to \mathbb{R}$

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Then

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) := \lim_{t\to 0} \frac{f(\mathbf{a}+t\mathbf{e}_i)-f(\mathbf{a})}{t},$$

when exists, is called partial derivative of f at \mathbf{a} w.r.t to the i-th variable.

Other notations for $\frac{\partial f}{\partial x_i}(\mathbf{a})$:

$$f_{x_i}(\mathbf{a}), \ \partial_{x_i}f(\mathbf{a}), \ \partial_if(\mathbf{a}).$$

If $\partial_i f(\mathbf{a})$ exists for i = 1, 2, ..., n, then f is said to have first order partial derivatives at \mathbf{a} .

Examples

• Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0) := 0 and $f(x,y) := xy/(x^2 + y^2)$ for $(x,y) \neq (0,0)$. Then

$$\partial_1 f(0,0) = \partial_2 f(0,0) = 0$$

even though f is NOT continuous at (0,0).

ullet Consider $f:\mathbb{R}^2 o \mathbb{R}$ given by f(0,0)=0 and

$$f(x,y) := \begin{cases} x \sin(1/y) + y \sin(1/x) & \text{if } x \neq 0, y \neq 0, \\ x \sin(1/x) & \text{if } x \neq 0, y = 0, \\ y \sin(1/y) & \text{if } x = 0, y \neq 0. \end{cases}$$

Then f is continuous at (0,0) but neither $\partial_1 f(0,0)$ nor $\partial_2 f(0,0)$ exists.

Moral: Partial derivatives \neq continuity \neq Partial derivatives

Sum, product and chain rule

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Suppose $\partial_i f(\mathbf{a})$ and $\partial_i g(\mathbf{a})$ exist. Then

- $\partial_i(\alpha f)(\mathbf{a}) = \alpha \partial_i f(\mathbf{a})$ for $\alpha \in \mathbb{R}$,
- $\partial_i(f+g)(\mathbf{a}) = \partial_i f(\mathbf{a}) + \partial_i g(\mathbf{a}),$
- $\partial_i(fg)(\mathbf{a}) = \partial_i f(\mathbf{a})g(\mathbf{a}) + f(\mathbf{a})\partial_i g(\mathbf{a}).$
- If $h : \mathbb{R} \to \mathbb{R}$ is differentiable at $f(\mathbf{a})$ then $\partial_i(h \circ f)(\mathbf{a})$ exists and $\partial_i(h \circ f)(\mathbf{a}) = h'(f(\mathbf{a}))\partial_i f(\mathbf{a})$.

Gradient of $f: \mathbb{R}^n \to \mathbb{R}$

Define $\phi_i : \mathbb{R} \to \mathbb{R}$ by $\phi_i(t) := f(\mathbf{a} + t\mathbf{e}_i)$. Then

$$\partial_i f(\mathbf{a}) = \lim_{t \to 0} \frac{\phi_i(t) - \phi_i(0)}{t} = \phi_i'(0) = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{a} + t\mathbf{e}_i)_{|t=0},$$
= rate of change of f at \mathbf{a} in the direction \mathbf{e}_i .

Suppose partial derivatives of $f: \mathbb{R}^n \to \mathbb{R}$ exist at $\mathbf{a} \in \mathbb{R}^n$. Then the vector

$$\nabla f(\mathbf{a}) := (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a})) \in \mathbb{R}^n$$

is called the gradient of f at a.

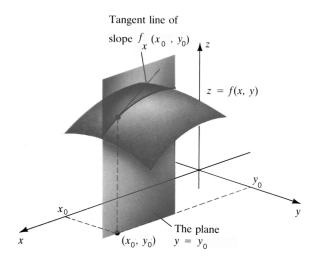


Figure: Graph of z = f(x, y) and geometric interpretation of $\partial_x f(x_0, y_0)$.

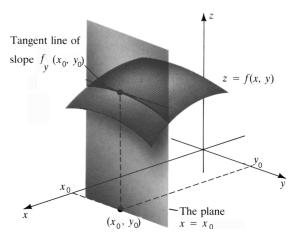


Figure: Graph of z = f(x, y) and geometric interpretation of $\partial_y f(x_0, y_0)$.

Directional derivatives of $f: \mathbb{R}^n \to \mathbb{R}$

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Also let $\mathbf{u} \in \mathbb{R}^n$ with $\|\mathbf{u}\| = 1$. Then the limit, when exists,

$$D_{\mathbf{u}}f(\mathbf{a}) := \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{a} + t\mathbf{u})_{|t=0},$$
= rate of change of f at \mathbf{a} in the direction \mathbf{u} ,

is called directional derivative of f at \mathbf{a} in the direction \mathbf{u} .

• $D_{\bf u}f({\bf a})$, also denoted by $\frac{\partial f}{\partial {\bf u}}({\bf a})$, is the rate of change of f at ${\bf a}$ in the direction ${\bf u}$.

Properties of directional derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Also let $\mathbf{u} \in \mathbb{R}^n$ with $\|\mathbf{u}\| = 1$.

Then

- Sum, product and chain rule similar to those of $\partial_i f(\mathbf{a})$ hold for $D_{\mathbf{u}} f(\mathbf{a})$.
- If $D_{\mathbf{u}}f(\mathbf{a})$ exists for all nonzero $\mathbf{u} \in \mathbb{R}^n$ then f is said to have directional derivatives in all directions.
- Obviously ∂_if(a) = D_{e_i}f(a). Hence D_uf(a) exists in all directions u ⇒ ∂_if(a) exist for i = 1, 2, ..., n.

Examples

- 1. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) := \sqrt{|xy|}$. Then $\partial_1 f(0,0) = 0 = \partial_2 f(0,0)$ and f is continuous at (0,0). However, $D_{\mathbf{u}} f(0,0)$ does NOT exist for $u_1 u_2 \neq 0$.
- 2. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0)=0 and $f(x,y):=\frac{x^2y}{x^4+y^2}$ if $(x,y)\neq (0,0)$. Then f is NOT continuous at (0,0), $\partial_1 f(0,0)=0=\partial_2 f(0,0)$ and $D_{\mathbf{u}}f(0,0)$ exits for all \mathbf{u} . Further, $D_{\mathbf{u}}f(0,0)=u_1^2/u_2$ for $u_1u_2\neq 0$.

Moral: Partial derivatives $\not\Rightarrow$ Directional derivative $\not\Rightarrow$ Continuity $\not\Rightarrow$ Directional derivative.

*** End ***