1. Consider the one parameter family of curves $x^2 = ce^y$ where c is an arbitrary constant. The trajectory through the point x = 0, y = 0 which is orthogonal to the given family also passes through the point (x = 2, y = --). [2]

Answer:

$$x^2 = ce^y \implies ce^y \frac{dy}{dx} = 2x \implies \frac{dy}{dx} = \frac{2x}{x^2} = \frac{2}{x}$$

The orthogonal trajectory is given by the ODE

$$\frac{dy}{dx} = \frac{-x}{2}, \qquad y(0) = 0.$$

Hence, the orthogonal trajectory is $y = -\frac{x^2}{4}$ and y(2) = -1.

- 2. (a) Determine three linearly independent solutions of the homogeneous system [3] $\frac{dx}{dt} = x + y$
 - $\frac{dy}{dt} = -x + 3y$ $\frac{dz}{dt} = -x + y + 2z.$

Answer: The coefficient matrix A has eigenvalues 2, 2, 2. [0.5] Two linearly independent eigenvectors can be taken as $\vec{v} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ and $\vec{w} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$. [0.5]

Thus we get two linearly independent solutions $e^{2t}\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ and $e^{2t}\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$. [0.5]

The third linealy independent solution is of the form $e^{2t}(t\overrightarrow{a}+\overrightarrow{b})$ where $\overrightarrow{a} = k_1\overrightarrow{v} + k_2\overrightarrow{w}$ gives a consistent system of linar equations for $(A-2I)\overrightarrow{b} = \overrightarrow{a}$. [0.5]

Solving, we find that $\overrightarrow{a} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and $\overrightarrow{b} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$. [1]

Remark: There may be other valid choices for \overrightarrow{b} , for example, $\overrightarrow{b} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ or $\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}^T$. (b) Find out the critical solution(s) and discuss stability of each critical solution. [2]

Answer: Solving $\frac{dx}{dt} = 0$, $\frac{dy}{dt} = 0$ and $\frac{dz}{dt} = 0$, we get (0, 0, 0) as the only critical solution. [1]

As the eigenvalues are positve, the critical solution is unstable. [1]

(c) Find the solution of the IVP consisting of the above system together with the initial condition x(0) = 2, y(0) = 3, z(0) = 4. [2]
Answer: We need to find c₁, c₂ and c₃ such that for t = 0,

$$c_1 e^{2t} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T + c_2 e^{2t} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T + c_1 e^{2t} \left(t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T + \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \right) = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T \qquad (t = 0).$$

We get $c_1 = 2$, $c_2 = 4$ and $c_3 = 1$ [1]

(or equivalently
$$x(t) = e^{2t}(t+2), y(t) = e^{2t}(t+3), z(t) = e^{2t}(t+4).$$
 [1])