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Gaussian elimination (GE)

Linear system −→ Upper triangular system −→ Solution

Ax = b −→ Ux = d =⇒ x

[
A | b

]
−→

[
U | d

]
=⇒ x

Tools of the Trade: Elementary row operations

Multiply a row by nonzero scalar: rowi (A) −→ α rowi (A).

Add a row to another row: rowi (A) + rowj(A) −→ rowj(A).

Row exchange: rowi (A)↔ rowj(A)

Exercise: Describe inverse operations.
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Forward elimination (Forward GE)
Square matrix:∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗

→
∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

→
p11 ∗ ∗

0 p22 ∗
0 0 p33

 .

Rectangular matrix:∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

→
∗ ∗ ∗ ∗0 ∗ ∗ ∗

0 ∗ ∗ ∗

→
p11 ∗ ∗ ∗

0 p22 ∗ ∗
0 0 p33 ∗


Rectangular matrix:
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

→

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

→

p11 ∗ ∗
0 p22 ∗
0 0 p33
0 0 0


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Example 1

Square system:

 2 1 1
−1 2 0
1 −1 2

x1x2
x3

 =

 2
1
−2


Forward elimination (Forward GE) −→ Upper triangular form: 2 1 1 2
−1 2 0 1
1 −1 2 −2

→
 1 −1 2 −2
−1 2 0 1
2 1 1 2



→

 1 −1 2 −2
0 1 2 −1
0 3 −3 6

→
 1 −1 2 −2

0 1 2 −1
0 0 −9 9


Back substitution: x3 = −1, x2 = 1 and x1 = 1.
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Example 2

Square System:

0 1 5
1 4 3
2 7 1

x1x2
x3

 =

−4
−2
−1


Forward GE:

 0 1 5 −4
1 4 3 −2
2 7 1 −1

→
 1 4 3 −2

0 1 5 −4
2 7 1 −1

→
 1 4 3 −2

0 1 5 −4
0 −1 −5 3



→

 1 4 3 −2
0 1 5 −4
0 0 0 −1

 =⇒ No solution
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Example 3

Nonsquare system:

[
2 1 1
1 −1 2

]x1x2
x3

 =

[
2
−2

]

Forward GE:

[
2 1 1 2
1 −1 2 −2

]
→
[

1 −1 2 −2
2 1 1 2

]
→
[

1 −1 2 −2
0 3 −3 6

]

→
[

1 −1 2 −2
0 1 −1 2

]

Back substitution: x3 = t, x2 = 2 + t and x1 = −t for t ∈ R.
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Echelon form

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is
called a pivot column.

Echelon form: An m × n matrix A is in echelon form provided:

All zero rows appear at the bottom.

The pivot (leading entry) in a row is always to the right of the
pivot of the row above it.

Notation: Ref(A) = row echelon form of A.
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Examples

Matrices in echelon form:

p ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 p ∗ ∗ ∗ ∗ ∗
0 0 0 p ∗ ∗ ∗ ∗
0 0 0 0 0 0 p ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,
p ∗ ∗ ∗ ∗

0 0 p ∗ ∗
0 0 0 0 0

 ,
p ∗ ∗

0 p ∗
0 0 p

 .

Matrices not in echelon form:
2 3 4 2
0 0 1 0
0 0 3 1
0 0 0 2

 ,
0 1 0

0 1 2
0 0 1

 ,
0 0 2

0 2 3
0 0 0

 .
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Forward GE and echelon form

Forward GE:

m × n matrix A −→ Upper triangular form U.

Forward GE with additional restrictions on pivot entries:

m × n matrix A −→ echelon form Ref(A).

Remark: Echelon form of A is NOT unique.

Echelon form via forward GE: 0 1 5
1 4 3
2 7 1

→
 1 4 3

0 1 5
2 7 1

→
 1 4 3

0 1 5
0 −1 −5

→
 1 4 3

0 1 5
0 0 0

 .
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Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system
is inconsistent if it is NOT consistent.

Theorem: An m × n system Ax = b is consistent ⇐⇒ the last
column of Ref([A | b]) is not a pivot column.

Consider the augmented matrix 0 1 5 −4
1 4 3 −2
2 7 1 −1

→
 1 4 3 −2

0 1 5 −4
2 7 1 −1

→
 1 4 3 −2

0 1 5 −4
0 −1 −5 3



→

 1 4 3 −2
0 1 5 −4
0 0 0 −1

 = echelon form⇒ inconsistent
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Reduced row echelon form

An m × n matrix A is in reduced row echelon form provided:

A is in row echelon form.

Each pivot (leading entry) in A is 1.

Pivot is the only nonzero entry in a pivot column.

Notation: Rref(A) = reduced row echelon form of A.

Matrices in echelon form:

1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 1 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,
1 ∗ 0 ∗ ∗

0 0 1 ∗ ∗
0 0 0 0 0

 ,
1 0 0

0 1 0
0 0 1

 .
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Gauss-Jordan elimination and rref

Forward GE : m × n matrix A −→ Ref(A).
Backward GE: Ref(A) −→ Rref(A).

Backward GE:p ∗ ∗ ∗ ∗
0 0 p ∗ ∗
0 0 0 0 0

→
p ∗ 0 ∗ ∗

0 0 1 ∗ ∗
0 0 0 0 0

→
1 ∗ 0 ∗ ∗

0 0 1 ∗ ∗
0 0 0 0 0


Gauss-Jordan elimination = Forward GE followed by backward GE.

Gauss-Jordan elimination: m × n matrix A −→ Rref(A).

Theorem: Reduced row echelon form of an m × n matrix A is
unique.
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Example: Gauss-Jordan elimination

Forward GE: A→ Ref(A)0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

→
1 −3 4 −3 2 5

0 1 −2 2 1 −3
0 0 0 0 1 4



Backward GE: Ref(A)→ Rref(A)1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

→
1 0 2 3 5 −4

0 1 −2 2 1 −3
0 0 0 0 1 4



→

1 0 2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

 .

14 / 31
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Rank of a matrix

Rank: The rank of an m × n matrix A, denoted by rank(A), is the
number of pivots in Rref(A).

A :=

1 0 3
0 1 −2
2 1 4

→
1 0 3

0 1 −2
0 0 0

⇒ rank(A) = 2.

Fact:

rank(A) = number of pivot columns in Rref(A) = number of
nonzero rows in Rref(A).

rank(A) = number of pivot columns in Ref(A) = number of
nonzero rows in Ref(A).

15 / 31



Rank of a matrix

Rank: The rank of an m × n matrix A, denoted by rank(A), is the
number of pivots in Rref(A).

A :=

1 0 3
0 1 −2
2 1 4

→
1 0 3

0 1 −2
0 0 0

⇒ rank(A) = 2.

Fact:

rank(A) = number of pivot columns in Rref(A) = number of
nonzero rows in Rref(A).

rank(A) = number of pivot columns in Ref(A) = number of
nonzero rows in Ref(A).

15 / 31



Leading and free variable:

Free variable: A variable in a system Ax = b is called a free
variable if the system has a solution for every value of that variable.

 1 0 3 −1
0 1 −2 3
2 1 4 1

→
 1 0 3 −1

0 1 −2 3
0 0 0 0

⇒ x1 = −1− 3x3
x2 = 3 + 2x3
x3 : free

Leading variables: Let [A | b] −→ Rref([A | b]) =: [R | d ]. Then
the variables corresponding to the pivot columns of R are called
leading variable.

Theorem: The number of free variables in a consistent m × n
system Ax = b is given by n − rank(A).

Proof: # Free variables = # non-pivot columns = n − rank(A).
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Rank and consistency

Fact: An m × n homogeneous system Ax = 0 has

infinitely many solutions if rank(A) < n,

unique (trivial) solution if rank(A) = n.

Fact: An m × n system Ax = b

is inconsistent if rank(A) 6= rank([A | b]).

consistent if rank(A) = rank([A | b]).

has unique solution if rank(A) = rank([A | b]) = n.

infinitely many solutions if rank(A) = rank([A | b]) < n.

[
1 2 1
1 2 k

]
→
[

1 2 1
0 0 k − 1

]
⇒ inconsistent if k 6= 1.
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Elementary matrices

Type Operation Inverse operation
I Ri −→ αRi Ri −→ 1

α Ri

II cRi + Rj −→ Rj −cRi + Rj −→ Rj

III Ri ↔ Rj Ri ↔ Rj

An elementary matrix is a matrix that is obtained by performing an
elementary row operation on the identity matrix.

Type I : E2(α) =

1 0 0
0 α 0
0 0 1

⇒ E2

x1x2
x3

 =

 x1
αx2
x3

 .
E2(α)A =

 row1(A)
α row2(A)
row3(A)

 = multiply 2nd row of A by α.

(E2(α))−1 = E2(
1

α
).

18 / 31



Elementary matrices

Type Operation Inverse operation
I Ri −→ αRi Ri −→ 1

α Ri

II cRi + Rj −→ Rj −cRi + Rj −→ Rj

III Ri ↔ Rj Ri ↔ Rj

An elementary matrix is a matrix that is obtained by performing an
elementary row operation on the identity matrix.

Type I : E2(α) =

1 0 0
0 α 0
0 0 1

⇒ E2

x1x2
x3

 =

 x1
αx2
x3

 .
E2(α)A =

 row1(A)
α row2(A)
row3(A)

 = multiply 2nd row of A by α.

(E2(α))−1 = E2(
1

α
).

18 / 31



Elementary matrices

Type Operation Inverse operation
I Ri −→ αRi Ri −→ 1

α Ri

II cRi + Rj −→ Rj −cRi + Rj −→ Rj

III Ri ↔ Rj Ri ↔ Rj

An elementary matrix is a matrix that is obtained by performing an
elementary row operation on the identity matrix.

Type I : E2(α) =

1 0 0
0 α 0
0 0 1

⇒ E2

x1x2
x3

 =

 x1
αx2
x3

 .
E2(α)A =

 row1(A)
α row2(A)
row3(A)

 = multiply 2nd row of A by α.

(E2(α))−1 = E2(
1

α
).

18 / 31



Type II elementary matrices

Type II : E13(2) :=

1 0 0
0 1 0
2 0 1

 = I3 + 2e3e
T
1

The matrix E13 is obtained by performing 2R1 + R3 → R3 on I3.

E13(2)

x1x2
x3

 =

 x1
x2

x3 + 2x1

⇒ E13A =

 row1(A)
row2(A)

row3(A) + 2 row1(A)

 .

(E13(2))−1 = E13(−2) corresponds to −2R1 + R3 → R3 on I3.
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Type III elementary matrices

Type III : Eij is obtained by performing Ri ↔ Rj on I .

E23 =

 1 0 0
0 0 1
0 1 0

⇒ E23

x1x2
x3

 =

x1x3
x2

⇒ E23A =

row1(A)
row3(A)
row2(A)

 .

(Eij)
−1 = Eij corresponds to row operation Ri ↔ Rj on I .

Observation: Inverse of an elementary matrix is also an
elementary matrix of same type.
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Row operation via elementary matrices

Crux of the matter:

Type I: Multiplying Ei (c) to A giving Ei (c)A amounts to
performing the row operation cRi → Ri on A.

Type II: Multiplying Eij(c) to A giving Eij(c)A amounts to
performing the row operation cRi + Rj → Rj on A..

Type III: Multiplying Eij to A giving EijA amounts to
performing the row operation Ri ↔ Rj on A.

Two matrices A and B are said to be row equivalent if A can be
transformed to B by elementary row operations.

Fact: The matrices A and B are row equivalent ⇐⇒
B = Ek · · ·E2E1A for some elementary matrices E1,E2, · · · ,Ek .
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Elementary matrices and echelon form

Forward GE: m × n matrix A −→ row echelon form Ref(A)

⇓

Ref(A) = Ep · · ·E2E1A for some elementary matrices E1, . . . ,Ep.

Gauss-Jordan: A −→ reduced row echelon form Rref(A)

⇓

Rref(A) = Ek · · ·E2E1A for some elementary matrices E1, . . . ,Ek .

Fact: Let [A | b] −→ Ref([A | b]) =: [U | d ]. Then the system
Ax = b and Ux = d are equivalent.
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Invertible matrices

An n× n matrix A is said to be invertible if there exists a matrix B
such that AB = In = BA. Then B is called an inverse of A.

We can talk of invertibility only for square matrices.

For example, the matrix A =

[
2 5
1 3

]
is invertible since

[
2 5
1 3

] [
3 −5
−1 2

]
=

[
1 0
0 1

]
=

[
3 −5
−1 2

] [
2 5
1 3

]
.

The zero matrix O is never invertible.

Fact: If A is an invertible matrix then its inverse is unique and is
denoted by A−1.
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Characterization of invertibility

Theorem: Let A be an n × n matrix. Then the following
statements are equivalent.

1 A is invertible.

2 Ax = b has a unique solution for every b in Rn.

3 Ax = 0 has only the trivial solution.

4 The reduced row echelon form of A is In.

5 A is a product of elementary matrices.

6 rank(A) = n
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Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.

1 If c 6= 0 then cA is also invertible, and (cA)−1 = 1
cA

−1.

2 The matrix AB is invertible, and (AB)−1 = B−1A−1.

3 The matrix AT is invertible, and (AT )−1 = (A−1)T .

4 For any non-negative integer k, the matrix Ak is invertible,
and (Ak)−1 = (A−1)k .

Let A :=

[
a b
c d

]
. If ad − bc 6= 0 then A is invertible, and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0 then A is not invertible.
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Gauss-Jordan method for computing inverse

Exercise: Let A and B be n × n matrices. If AB = I or BA = I ,
then show that A is invertible and B = A−1.

Fact: Let A be an n × n matrix. If Ep · · ·E2E1A = In then
A−1 = Ep · · ·E2E1, where E1, . . . ,Ep are elementary matrices.

Moral: Elementary row operations that transform A to In
transform In to A−1.

Gauss-Jordan method:

[A | In] −→ [In | X ]⇒ A is invertible and A−1 = X .
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Example: Gauss-Jordan method

Let A :=

1 2 3
2 5 7
3 7 9

 . Then [A | I ]→ [I | A−1] gives

 1 2 3 1 0 0
2 5 7 0 1 0
3 7 9 0 0 1

→
 1 2 3 1 0 0

0 1 1 −2 1 0
0 1 0 −3 0 1

→
 1 0 1 5 −2 0

0 1 1 −2 1 0
0 0 −1 −1 −1 1

→
 1 0 0 4 −3 1

0 1 0 −3 0 1
0 0 1 1 1 −1



⇒ A−1 =

 4 −3 1
−3 0 1
1 1 −1

 .
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LU Factorization

An n × n matrix A has an LU factorization if A = LU, where U is
upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If A −→ Ref(A) without row interchange then A has an LU
factorization.

Ep . . .E2E1A = Ref(A)⇒ A = LU.

L := E−1
1 E−1

2 . . .E−1
p and U := Ref(A).

Each Ej is unit lower triangular and Type-II ⇒ L is unit lower
triangular.

Solution of Ax = b via LU factorization (if exists):

Compute A = LU.

Solve Ly = b for y - forward substitution.

Solve Ux = y for x - back substitution.
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LU factorization (cont.)

Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . Set m21 := a21/a11 and m31 := a31/a11

when a11 6= 0 (pivot) and define

E1 :=

 1 0 0
−m21 1 0

0 0 1

 and E2 :=

 1 0 0
0 1 0
−m31 0 1

 .

Then

E2E1A = E2

a11 a12 a13

0 a
(1)
22 a

(1)
23

a31 a32 a33

 =

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 a
(1)
32 a

(1)
33

 .
Set m32 := a

(1)
32 /a

(1)
22 if a

(1)
22 6= 0 (pivot) and define
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LU factorization (cont.)

E3 :=

1 0 0
0 1 0
0 −m32 1

 . Then we have

E3E2E1A = E3

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 a
(1)
32 a

(1)
33

 =

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 a
(2)
33

 = U.

.

Hence A = LU, where L = E−1
1 E−1

2 E−1
3 =

 1 0 0
m21 1 0
m31 m32 1

 .
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LU factorization (cont.)

E3 :=

1 0 0
0 1 0
0 −m32 1

 . Then we have

E3E2E1A = E3
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m31 m32 1

 .
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Examples: LU factorization

Let A :=

1 1 1
1 2 2
1 2 3

 . Then A = LU, where

L =

1 0 0
1 1 0
1 1 1

 and U =

1 1 1
0 1 1
0 0 1

 .

Let A :=

 2 4 −1
−4 −5 3
2 −5 −4

 . Then A = LU, where

L =

 1 0 0
−2 1 0
1 −3 1

 and U =

2 4 −1
0 3 1
0 0 0

 .
*** End ***
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