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Gaussian elimination (GE)
Linear system — Upper triangular system — Solution

Ax=b— Ux=d = x

A | b —[U | d = x
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Gaussian elimination (GE)
Linear system — Upper triangular system — Solution
Ax=b— Ux=d = x
A | b —[U | d] = x
Tools of the Trade: Elementary row operations

e Multiply a row by nonzero scalar: row;(A) — arow;(A).
e Add a row to another row: row;(A) + row;(A) — row;(A).

@ Row exchange: row;(A) <> row;(A)

Exercise: Describe inverse operations.



Forward elimination (Forward GE)
Square matrix:
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Forward elimination (Forward GE)
Square matrix:

* * ok P11 * *
* — |0 x —= | 0 pxo =
* 0 = 0 0 P33
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Forward elimination (Forward GE)
Square matrix:

* * % P11 * *
* — |0 = =10 pn *
* 0 = 0 0 ps3

* ok x % * k% % P11 * * %
x % x %[ = [0 x x x| = [0 pn x x
* ok ok % 0 * * % 0 0 p33 x*
Rectangular matrix:
* ok % * k% * ok % P11 * *
* k% 0 *x =« 0 *x = 0 *
— — — P22
* k% 0 * = 0 0 = 0 0 p33
* ok % 0 * =« 0 0 = 0 0 0
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Example 1

2 1 1] [x 2
Square system: |—-1 2 0| x| =|1
1 -1 2| |x3 -2

Forward elimination (Forward GE) — Upper triangular form:
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Example 1

2 1 1] [x 2
Square system: |—-1 2 0| x| =|1
1 -1 2| |x3 -2

Forward elimination (Forward GE) — Upper triangular form:

2 1 1] 2 1 -1 2|2

-1 2 0|1 - -1 2 0|1

1 -1 2|-2 2 1 1] 2
1 -1 2|2 1 -1 2|2
-0 1 2|-1]—=]0 1 2 |-1
0 3 3|6 0 0 -9|09

Back substitution: x3 = —1,x =1 and x; = 1.
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Example 2

015 X1 —4
Square System: |1 4 3| |x| = [-2
2 7 1| |x3 -1
Forward GE:
—4 -2 1 4 3 |-=2

|
—_
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|
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|
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Example 2

015 X1 —4
Square System: |1 4 3| |x| = [-2
2 7 1| |x3 -1
Forward GE:
0 1 5|4 1 4 3|-2 1 4 3 |-2
1 4 3| -2|—=101©5|-4|—=10 1 5 | -4
2 7 1]-1 2 7 1|-1 0 -1 —-5| 3
1 4 3| -2
— |1 0 1 5| —-4 | = No solution
0 0 0]—-1]
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Example 3

IR
Nonsquare system: 1 Xo| =

Forward GE:
2112_>1—12—2_>1—12—2
1 -1 2|-2 2 1 1| 2 0 3 3|6
o 1 -1 2| =2
O 1 -1| 2

Back substitution: x3 = t,xp =2+t and x;y = —t for t € R.
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Echelon form

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is
called a pivot column.

31



Echelon form

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is
called a pivot column.

Echelon form: An m x n matrix A is in echelon form provided:
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Echelon form

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is
called a pivot column.

Echelon form: An m x n matrix A is in echelon form provided:

@ All zero rows appear at the bottom.



Echelon form

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is
called a pivot column.

Echelon form: An m x n matrix A is in echelon form provided:

@ All zero rows appear at the bottom.

@ The pivot (leading entry) in a row is always to the right of the
pivot of the row above it.

Notation: Ref(A) = row echelon form of A.
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Matrices in echelon form:

Examples

Matrices not in echelon form:
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Forward GE and echelon form

Forward GE:

m X n matrix A — Upper triangular form U.

Forward GE with additional restrictions on pivot entries:

m x n matrix A — echelon form Ref(A).

Remark: Echelon form of A is NOT unique.

10/31



Forward GE and echelon form

Forward GE:

m X n matrix A — Upper triangular form U.

Forward GE with additional restrictions on pivot entries:

m x n matrix A — echelon form Ref(A).

Remark: Echelon form of A is NOT unique.

Echelon form via forward GE:

015 1 4 3 1 4 3
1 4 3|—-(0105]|]—=1]10 1 5 —
2 71 2 71 0 -1 -5

o O =

o b

o 1 W
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Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system
is inconsistent if it is NOT consistent.
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Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system
is inconsistent if it is NOT consistent.

Theorem: An m x n system Ax = b is consistent <= the last
column of Ref([A | b]) is not a pivot column.
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Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system
is inconsistent if it is NOT consistent.

Theorem: An m x n system Ax = b is consistent <= the last
column of Ref([A | b]) is not a pivot column.

Consider the augmented matrix

0 1 5|-4 1 4 3|-2 1 4 3|2
1 4 3|-2(—-1015|-4|—-10 1 5 | -4
2 7 1|-1 2 7 1|-1 0 -1 -5| 3
1 4 3|-=-2
— | 0 1 5| —4 | = echelon form = inconsistent
0 0 0]-1

11/31



Reduced row echelon form

An m x n matrix A is in reduced row echelon form provided:
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Reduced row echelon form

An m x n matrix A is in reduced row echelon form provided:

@ Ais in row echelon form.
e Each pivot (leading entry) in Ais 1.

@ Pivot is the only nonzero entry in a pivot column.

Notation: Rref(A) = reduced row echelon form of A.
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Reduced row echelon form

An m x n matrix A is in reduced row echelon form provided:

@ Ais in row echelon form.
e Each pivot (leading entry) in Ais 1.

@ Pivot is the only nonzero entry in a pivot column.

Notation: Rref(A) = reduced row echelon form of A.

Matrices in echelon form:

0

O O *
o = O
O % %
O * %
O O
O = O
= O O

OO+~ O OO

O o oo o
O O O O O %
OO O+ OO
O O O % * %
O O O % % *
O O % % % %

O O O O
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Gauss-Jordan elimination and rref

Forward GE : m x n matrix A — Ref(A).
Backward GE: Ref(A) — Rref(A).
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Gauss-Jordan elimination and rref

Forward GE : m x n matrix A — Ref(A).
Backward GE: Ref(A) — Rref(A).

Backward GE:

p x ok k% p *x 0 x x 1 %« 0 x =
0 0 p*x x|—=>1]0 01 % x[—=|(0 0 1 % =x
00 0O0O 0 00O0O 0 00O0O
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Gauss-Jordan elimination and rref

Forward GE : m x n matrix A — Ref(A).
Backward GE: Ref(A) — Rref(A).

Backward GE:

p x ok k% p *x 0 x x 1 %« 0 x =
0 0 p*x x|—=>1]0 01 % x[—=|(0 0 1 % =x
00 0O0O 0 00O0O 0 00O0O

Gauss-Jordan elimination = Forward GE followed by backward GE.
Gauss-Jordan elimination: m x n matrix A — Rref(A).
Theorem: Reduced row echelon form of an m x n matrix A is

unique.
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Example: Gauss-Jordan elimination

Forward GE: A — Ref(A)

0 3 -6 6 4 -5 1 -3 4 -3 2 5
3 -r 8 -8 9|—=-(0 1 -2 2 1 -3
0

3 -9 12 -9 6 15

14 /31



Example: Gauss-Jordan elimination

Forward GE: A — Ref(A)
0 3 -6 6 4 -5 1 -3

3 -7 8 -58 9| =10 1
3 -9 12 -9 6 15 0 O

Backward GE: Ref(A) — Rref(A)

1
O O =
o = O

0 01

1 -3 4 -3 2 5 10

0o 1 -2 2 1 -3|—=1|01

0 0 0 0 1 4 00
2 3 0 24
-2 2 0 -7

14 /31



Rank of a matrix

Rank: The rank of an m x n matrix A, denoted by rank(A), is the
number of pivots in Rref(A).

10 3 10 3
A=10 1 -2 - |0 1 —-2| = rank(A)=2.
21 4 00 O
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Rank of a matrix

Rank: The rank of an m x n matrix A, denoted by rank(A), is the
number of pivots in Rref(A).

10 3 10 3
A=10 1 -2 - |0 1 —-2| = rank(A)=2.
21 4 00 O

Fact:

e rank(A) = number of pivot columns in Rref(A) = number of
nonzero rows in Rref(A).

e rank(A) = number of pivot columns in Ref(A) = number of
nonzero rows in Ref(A).
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Leading and free variable:

Free variable: A variable in a system Ax = b is called a free

variable if the system has a solution for every value of that variable.

10 3 |-1 10 3 |-1 x1=—1—3x3
01 -2 3 - 101 -2 3 = xp =3+ 2x3
2 1 4 1 0 0 O 0 x3 : free

16
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Leading and free variable:

Free variable: A variable in a system Ax = b is called a free
variable if the system has a solution for every value of that variable.

10 3 |-1 10 3 |-1 x1=—1—3x3
01 -2 3 - 101 -2 3 = xp =3+ 2x3
2 1 4 1 0 0 O 0 x3 : free

Leading variables: Let [A | b] — Rref([A | b]) =: [R | d]. Then
the variables corresponding to the pivot columns of R are called
leading variable.

Theorem: The number of free variables in a consistent m x n
system Ax = b is given by n — rank(A).
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Leading and free variable:

Free variable: A variable in a system Ax = b is called a free
variable if the system has a solution for every value of that variable.

10 3 |-1 10 3 |-1 x1=—1—3x3
01 -2 3 - 101 -2 3 = xp =3+ 2x3
2 1 4 1 0 0 O 0 x3 : free

Leading variables: Let [A | b] — Rref([A | b]) =: [R | d]. Then
the variables corresponding to the pivot columns of R are called
leading variable.

Theorem: The number of free variables in a consistent m x n
system Ax = b is given by n — rank(A).

Proof: # Free variables = # non-pivot columns = n — rank(A).

16 /31



Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.
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Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.

Fact: An m x n system Ax =b
@ is inconsistent if rank(A) # rank([A | b]).
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Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.

Fact: An m x n system Ax =b
@ is inconsistent if rank(A) # rank([A | b]).
e consistent if rank(A) = rank([A | b]).

17/31



Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.

Fact: An m x n system Ax =b
@ is inconsistent if rank(A) # rank([A | b]).
e consistent if rank(A) = rank([A | b]).
@ has unique solution if rank(A) = rank([A | b]) = n.
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Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.

Fact: An m x n system Ax =b
@ is inconsistent if rank(A) # rank([A | b]).
e consistent if rank(A) = rank([A | b]).
@ has unique solution if rank(A) = rank([A | b]) = n.

e infinitely many solutions if rank(A) = rank([A | b]) < n.
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Rank and consistency

Fact: An m x n homogeneous system Ax = 0 has
e infinitely many solutions if rank(A) < n,

@ unique (trivial) solution if rank(A) = n.

Fact: An m x n system Ax =b
@ is inconsistent if rank(A) # rank([A | b]).
e consistent if rank(A) = rank([A | b]).
@ has unique solution if rank(A) = rank([A | b]) = n.
e infinitely many solutions if rank(A) = rank([A | b]) < n.

1 2|k 0 0|k—-1

[1 21}%[1 2 1 ]:inconsistentifk;ﬁl.
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Elementary matrices

Type Operation Inverse operation
/ R — aR; R — LR
) cRi+ R — R | —cRi + R — R;
I R,' <~ RJ' R,' <~ Rj
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Elementary matrices

Type Operation Inverse operation
/ R — aR; R — LR
) cRi+ R — R | —cRi + R — R;
I R,' <~ RJ' R,' <~ Rj

An elementary matrix is a matrix that is obtained by performing an
elementary row operation on the identity matrix.
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Elementary matrices

Type Operation Inverse operation
/ R — aR; R — LR
) CR,'—i-Rj—)Rj —CR;—i—Rj—)Rj
I R,' <~ RJ' R,' <~ Rj

An elementary matrix is a matrix that is obtained by performing an
elementary row operation on the identity matrix.

1 0 0 X1 X1
Type l: Ex(a) = |0 a 0| = E |x| = |ax
0 0 1 X3 X3
rowi(A)
Ex(a)A = [arowa(A)| = multiply 2nd row of A by a.
rows(A)

1
Q

(E2(a)) ™ = E2().

18/31



Type Il elementary matrices

Type Il : E13(2) :=

N O =

00
1 0| =/h+2esef
01

The matrix Ej3 is obtained by performing 2R; + R3 — R3 on .

19/31



Type Il elementary matrices

Type Il : E13(2) :=

N O =

00
1 0| =h+2ese]
01

The matrix Ej3 is obtained by performing 2R; + R3 — R3 on .

X1 X1 rowi (A)
E13(2) Xo| = X2 = E13A = I"OWQ(A)
X3 X3+ 2x1 rows(A) + 2rowi(A)

(E13(2)) ™ = Ey3(—2) corresponds to —2R; + R3 — Rz on /.

19/31



Type Ill elementary matrices

Type lll : Ej; is obtained by performing R; <+ R; on [.

00 X1 X1 I‘OWl(A)
E23 = 01 = E23 X2 = [x3]| = E23A = 1"OW3(A) .
10

1
0
0 X3 Xo rowz(A)
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Type Ill elementary matrices

Type lll : Ej; is obtained by performing R; <+ R; on [.

1 00 X1 X1 rows(A)
E23 = 0 01 = E23 X2 = [ X3| = E23A = 1"OW3(A)
010 X3 Xo rowz(A)

(E;)~! = Ejj corresponds to row operation R; <+ R; on .

Observation: Inverse of an elementary matrix is also an
elementary matrix of same type.

20 /31



Row operation via elementary matrices

Crux of the matter:
e Type |: Multiplying E;(c) to A giving E;(c)A amounts to
performing the row operation cR; — R; on A.

e Type Il: Multiplying Ej(c) to A giving Ejj(c)A amounts to
performing the row operation cR; + R; — R; on A..

e Type lll: Multiplying Ej; to A giving E;;A amounts to
performing the row operation R; <+ R; on A.

21/31



Row operation via elementary matrices

Crux of the matter:

e Type |: Multiplying E;(c) to A giving E;(c)A amounts to
performing the row operation cR; — R; on A.

e Type Il: Multiplying Ej(c) to A giving Ejj(c)A amounts to
performing the row operation cR; + R; — R; on A..

e Type lll: Multiplying Ej; to A giving E;;A amounts to
performing the row operation R; <+ R; on A.

Two matrices A and B are said to be row equivalent if A can be
transformed to B by elementary row operations.

Fact: The matrices A and B are row equivalent <—-
B = Ej - - - ExE1 A for some elementary matrices Eq, Ep, - -, Ex.
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Elementary matrices and echelon form

Forward GE: m x n matrix A — row echelon form Ref(A)

4

Ref(A) = E, - - - E;E1 A for some elementary matrices Eq, ..., Ep,.
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Elementary matrices and echelon form

Forward GE: m x n matrix A — row echelon form Ref(A)

4

Ref(A) = E, - - - E;E1 A for some elementary matrices Eq, ..., Ep,.

Gauss-Jordan: A — reduced row echelon form Rref(A)

4

Rref(A) = Ei - - - E;E1 A for some elementary matrices Eq, ..., E.
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Elementary matrices and echelon form

Forward GE: m x n matrix A — row echelon form Ref(A)

4

Ref(A) = E, - - - E;E1 A for some elementary matrices Eq, ..., Ep,.

Gauss-Jordan: A — reduced row echelon form Rref(A)

4

Rref(A) = Ei - - - E;E1 A for some elementary matrices Eq, ..., E.

Fact: Let [A | b] — Ref([A | b]) =: [U | d]. Then the system
Ax = b and Ux = d are equivalent.



Invertible matrices

An n x n matrix A is said to be invertible if there exists a matrix B
such that AB = |, = BA. Then B is called an inverse of A.
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Invertible matrices

An n x n matrix A is said to be invertible if there exists a matrix B
such that AB = |, = BA. Then B is called an inverse of A.

@ We can talk of invertibility only for square matrices.
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Invertible matrices

An n x n matrix A is said to be invertible if there exists a matrix B
such that AB = |, = BA. Then B is called an inverse of A.

@ We can talk of invertibility only for square matrices.

@ For example, the matrix A = [ i g } is invertible since
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Invertible matrices

An n x n matrix A is said to be invertible if there exists a matrix B
such that AB = |, = BA. Then B is called an inverse of A.

@ We can talk of invertibility only for square matrices.

@ For example, the matrix A = [ i g } is invertible since

R T ER R R |

@ The zero matrix O is never invertible.
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Invertible matrices

An n x n matrix A is said to be invertible if there exists a matrix B
such that AB = |, = BA. Then B is called an inverse of A.

@ We can talk of invertibility only for square matrices.

@ For example, the matrix A = [ i g } is invertible since

2 5 3 -5 |10 _ 3 -5 2 5
1 3 -1 21 o 1] | -1 2 1 3|
@ The zero matrix O is never invertible.

Fact: If A is an invertible matrix then its inverse is unique and is
denoted by A~

23 /31



Characterization of invertibility

Theorem: Let A be an n x n matrix. Then the following
statements are equivalent.

@ A is invertible.

@ Ax = b has a unique solution for every b in R”".
© Ax =0 has only the trivial solution.

@ The reduced row echelon form of A is /,.

© A is a product of elementary matrices.

O rank(A) =n

24 /31



Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.
@ If ¢ # 0 then cA is also invertible, and (cA)~t = 1A~1.
@ The matrix AB is invertible, and (AB)™! = B~1A7L,
© The matrix AT is invertible, and (A7)~ = (A1),

@ For any non-negative integer k, the matrix AX is invertible,
and (AK)~1 = (A~H)k

25/31



Properties of invertible matrices
Fact: Let A and B be two invertible matrices of the same size.
@ If ¢ # 0 then cA is also invertible, and (cA)~t = 1A~1.

@ The matrix AB is invertible, and (AB)™! = B~1A7L,

© The matrix AT is invertible, and (A7)~ = (A1),

@ For any non-negative integer k, the matrix AX is invertible,

and (AK)~1 = (A~H)k

a b

Let A:= [ c d } . If ad — bc # 0 then A is invertible, and

1 d —b
Al = .
ad—bc[c a]

If ad — bc = 0 then A is not invertible.

25 /31



Gauss-Jordan method for computing inverse

Exercise: Let A and B be n x n matrices. If AB =1 or BA=1,
then show that A is invertible and B = A~ L.

26 /31



Gauss-Jordan method for computing inverse

Exercise: Let A and B be n x n matrices. If AB =1 or BA=1,
then show that A is invertible and B = A~ L.

Fact: Let A be an n x n matrix. If E,--- E;E1A = [, then
Al = Ep--- ExEq, where Eq, ..., E, are elementary matrices.

Moral: Elementary row operations that transform A to /,
transform 1/, to A~L.
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Gauss-Jordan method for computing inverse

Exercise: Let A and B be n x n matrices. If AB =1 or BA=1,
then show that A is invertible and B = A~ L.

Fact: Let A be an n x n matrix. If E,--- E;E1A = [, then
Al = Ep--- ExEq, where Eq, ..., E, are elementary matrices.

Moral: Elementary row operations that transform A to /,
transform 1/, to A~L.

Gauss-Jordan method:

[A| 1] — [l | X] = Ais invertible and A™! = X.

26 /31



Example: Gauss-Jordan method

1 2 3
Let A:= {2 5 7] .Then [A| 1] = [I | A71] gives
3709

27/31



Example: Gauss-Jordan method

1 2 3

Let A== |2 5 7|.Then[A|I]—=[l|A!] gives
3709
12 3/100 1 231 00
257/010|—-]011|-210]|—
379|001 010/ -301

27 /31



Example: Gauss-Jordan method

.Then [A| 1] = [I | A71] gives

M~ O

AN O I~

— N ™M

Let A := |:

%
—
o O
o - O
-~
M~ O
AN —
— O O
I
T
| —
O O
o - O
— O O
M N~ O
AN O M~
— QN ™M
L

-1 -1 1

-1

00
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Example: Gauss-Jordan method

.Then [A| 1] = [I | A71] gives

M~ O

AN O I~

— N ™M

Let A := |:

%
—
o O
o - O
-~
M~ O
AN —
— O O
I
T
| —
O O
o - O
— O O
M N~ O
AN O M~
— QN ™M
L

-1|-1 -1

00
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LU Factorization

An n x n matrix A has an LU factorization if A= LU, where U is
upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If A— Ref(A) without row interchange then A has an LU
factorization.

28 /31



LU Factorization

An n x n matrix A has an LU factorization if A= LU, where U is
upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If A— Ref(A) without row interchange then A has an LU
factorization.

o E,...EbEJA=TRef(A) = A= LU.
o L:=E'E;' .. E;Y and U :=Ref(A).

@ Each E; is unit lower triangular and Type-ll = L is unit lower
triangular.
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LU Factorization

An n x n matrix A has an LU factorization if A= LU, where U is
upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If A— Ref(A) without row interchange then A has an LU
factorization.

o E,... E2E1A =Ref(A) = A= LU.

o L:=E'E;' .. E;Y and U :=Ref(A).

@ Each E; is unit lower triangular and Type-ll = L is unit lower
triangular.

Solution of Ax = b via LU factorization (if exists):

o Compute A= LU.
@ Solve Ly = b for y - forward substitution.

@ Solve Ux = y for x - back substitution.
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LU factorization (cont.)

a11 a2 di3
Let A= |ap1 ax ax3|.Set mp = 821/811 and m31 := a31/a11

431 432 4as3

when aj; # 0 (pivot) and define

1 00 1 0 0
El = | —m2 10 and E2 = 0 10
0 01 —ms3i 01
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LU factorization (cont.)

a11 a2 di3
Let A= |ap1 ax ax3|.Set mp = 221/811 and m31 := a31/a11

431 432 4as3

when aj; # 0 (pivot) and define

1 0 0 1 0 0
El = | —m2 10 and E2 = 0 10
0 01 —ms3i 01
Then
a11 d12 a3 411 412 413
E;EiA=E> | 0 a§12) a%) =10 a£12) agl3)
a31 a3  as3 0 a%) ag?

Set m3p 1= agé)/agé) if a§12) # 0 (pivot) and define
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LU factorization (cont.)

1 0 0
Es =10 1 0| . Then we have

0 —msp 1
a1l 412 a13 di1 412 a3
EEEA=E|0 a8 a3 =0 a) | =u.
) 2)

0 a3 a3 0 0 a3

30/31



LU factorization (cont.)

1 0 0
Es =10 1 0| . Then we have
0 —msp 1
air d12 a3 air a2 a3
EEEA=E|0 a8 a3 =0 a) | =u.
0 3512) 3213) 0 0 3523)
1 0 0

Hence A= LU, where L= E;'E;'E; = [myy 1 0

m31 m3 1
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Examples: LU factorization

11
2 2|.Then A= LU, where
2 3

—= =

Let A = {

[1 0 0 111
L=1]1 1 0| andU= |0 1 1{.
111 0 01
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Examples: LU factorization

111
Let A:= |1 2 2|.Then A= LU, where
1 2 3]
[1 0 0 1 11
L=1]1 1 0f andU=|0 1 1
111 0 01
2 4 -1
Let A:=|—4 —5 3 |.Then A= LU, where
2 -5 —4
1 0 0 2 4 -1
L=]-2 1 0| andU=(0 3 1
1 -3 1 00 O

*kk Epd k¥
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