Echelon forms and linear systems

Department of Mathematics Indian Institute of Technology Guwahati

July - November 2013

Rafikul Alam

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = のへで

1/31

Outline

- Gaussian elimination
- Echelon form (Ref)
- Gauss-Jordan elimination and Rref

Outline

- Gaussian elimination
- Echelon form (Ref)
- Gauss-Jordan elimination and Rref
- Rank of a matrix
- Elementary matrices

Outline

- Gaussian elimination
- Echelon form (Ref)
- Gauss-Jordan elimination and Rref
- Rank of a matrix
- Elementary matrices
- Invertible matrices
- LU Factorization

Gaussian elimination (GE)

 $\mathsf{Linear \ system} \longrightarrow \mathsf{Upper \ triangular \ system} \longrightarrow \mathsf{Solution}$

$$Ax = b \longrightarrow Ux = d \Longrightarrow x$$

$$\begin{bmatrix} A & | & b \end{bmatrix} \longrightarrow \begin{bmatrix} U & | & d \end{bmatrix} \Longrightarrow x$$

Gaussian elimination (GE)

 $\mathsf{Linear \ system} \longrightarrow \mathsf{Upper \ triangular \ system} \longrightarrow \mathsf{Solution}$

$$Ax = b \longrightarrow Ux = d \Longrightarrow x$$

$$\begin{bmatrix} A & | & b \end{bmatrix} \longrightarrow \begin{bmatrix} U & | & d \end{bmatrix} \Longrightarrow x$$

Tools of the Trade: Elementary row operations

- Multiply a row by nonzero scalar: $row_i(A) \longrightarrow \alpha row_i(A)$.
- Add a row to another row: $\operatorname{row}_i(A) + \operatorname{row}_i(A) \longrightarrow \operatorname{row}_i(A)$.
- Row exchange: $\operatorname{row}_i(A) \leftrightarrow \operatorname{row}_j(A)$

Exercise: Describe inverse operations.

Forward elimination (Forward GE)

Square matrix:

$$\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \rightarrow \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \rightarrow \begin{bmatrix} p_{11} & * & * \\ 0 & p_{22} & * \\ 0 & 0 & p_{33} \end{bmatrix}$$

<ロト < 部 > < 言 > < 言 > 言 の < で 4/31

•

Forward elimination (Forward GE)

Square matrix:

$$\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \rightarrow \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \rightarrow \begin{bmatrix} p_{11} & * & * \\ 0 & p_{22} & * \\ 0 & 0 & p_{33} \end{bmatrix}$$

Rectangular matrix:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•

Forward elimination (Forward GE)

Square matrix:

$$\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \rightarrow \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \rightarrow \begin{bmatrix} p_{11} & * & * \\ 0 & p_{22} & * \\ 0 & 0 & p_{33} \end{bmatrix}$$

Rectangular matrix:

Rectangular matrix:

4/31

•

Square system:
$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

5/31

Forward elimination (Forward GE) \longrightarrow Upper triangular form:

$$\left[\begin{array}{ccc|c} 2 & 1 & 1 & 2 \\ -1 & 2 & 0 & 1 \\ 1 & -1 & 2 & -2 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & -1 & 2 & -2 \\ -1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 2 \end{array}\right]$$

Square system:
$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

Forward elimination (Forward GE) \longrightarrow Upper triangular form:

$$\begin{bmatrix} 2 & 1 & 1 & | & 2 \\ -1 & 2 & 0 & | & 1 \\ 1 & -1 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ -1 & 2 & 0 & | & 1 \\ 2 & 1 & 1 & | & 2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ 0 & 1 & 2 & | & -1 \\ 0 & 3 & -3 & | & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & -9 & | & 9 \end{bmatrix}$$

Back substitution: $x_3 = -1, x_2 = 1$ and $x_1 = 1$.

Square System: $\begin{bmatrix} 0 & 1 & 5 \\ 1 & 4 & 3 \\ 2 & 7 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \\ -1 \end{bmatrix}$

Forward GE:

 $\begin{bmatrix} 0 & 1 & 5 & | & -4 \\ 1 & 4 & 3 & | & -2 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 0 & -1 & -5 & | & 3 \end{bmatrix}$

Square System: $\begin{bmatrix} 0 & 1 & 5 \\ 1 & 4 & 3 \\ 2 & 7 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \\ -1 \end{bmatrix}$

Forward GE:

$$\begin{bmatrix} 0 & 1 & 5 & | & -4 \\ 1 & 4 & 3 & | & -2 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 0 & -1 & -5 & | & 3 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{cccc} 1 & 4 & 3 & -2 \\ 0 & 1 & 5 & -4 \\ 0 & 0 & 0 & -1 \end{array} \right] \implies \text{No solution}$$

6/31

イロト 不得 とくきとうきょう ほう

Nonsquare system:
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Forward GE:

$$\begin{bmatrix} 2 & 1 & 1 & | & 2 \\ 1 & -1 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ 2 & 1 & 1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ 0 & 3 & -3 & | & 6 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1 & 2 & | & -2 \\ 0 & 1 & -1 & | & 2 \end{bmatrix}$$

Back substitution: $x_3 = t, x_2 = 2 + t$ and $x_1 = -t$ for $t \in \mathbb{R}$.

< □ > < @ > < E > < E > E のQで 7/31

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is called a pivot column.

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is called a pivot column.

Echelon form: An $m \times n$ matrix A is in echelon form provided:

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is called a pivot column.

Echelon form: An $m \times n$ matrix A is in echelon form provided:

• All zero rows appear at the bottom.

Pivot: First nonzero entry in a row is called a pivot (leading entry).

Pivot column: A column containing a pivot (leading entry) is called a pivot column.

Echelon form: An $m \times n$ matrix A is in echelon form provided:

- All zero rows appear at the bottom.
- The pivot (leading entry) in a row is always to the right of the pivot of the row above it.

Notation: Ref(A) = row echelon form of A.

Matrices in echelon form:

Matrices not in echelon form:

$$\begin{bmatrix} 2 & 3 & 4 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Forward GE and echelon form

Forward GE:

 $m \times n$ matrix $A \longrightarrow$ Upper triangular form U.

Forward GE with additional restrictions on pivot entries:

 $m \times n$ matrix $A \longrightarrow$ echelon form $\operatorname{Ref}(A)$.

Remark: Echelon form of *A* is NOT unique.

Forward GE and echelon form

Forward GE:

 $m \times n$ matrix $A \longrightarrow$ Upper triangular form U.

Forward GE with additional restrictions on pivot entries:

 $m \times n$ matrix $A \longrightarrow$ echelon form $\operatorname{Ref}(A)$.

Remark: Echelon form of A is NOT unique.

Echelon form via forward GE:

$$\begin{bmatrix} 0 & 1 & 5 \\ 1 & 4 & 3 \\ 2 & 7 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 5 \\ 2 & 7 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 5 \\ 0 & -1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system is inconsistent if it is NOT consistent.

Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system is inconsistent if it is NOT consistent.

Theorem: An $m \times n$ system Ax = b is consistent \iff the last column of $\operatorname{Ref}([A \mid b])$ is not a pivot column.

Echelon form and consistency

A linear system Ax = b is consistent if it has a solution. A system is inconsistent if it is NOT consistent.

Theorem: An $m \times n$ system Ax = b is consistent \iff the last column of $\operatorname{Ref}([A \mid b])$ is not a pivot column.

Consider the augmented matrix

$$\begin{bmatrix} 0 & 1 & 5 & | & -4 \\ 1 & 4 & 3 & | & -2 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 2 & 7 & 1 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 0 & -1 & -5 & | & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & 1 & 5 & | & -4 \\ 0 & 1 & 5 & | & -4 \\ 0 & 0 & 0 & | & -1 \end{bmatrix} = \text{ echelon form } \Rightarrow \text{ inconsistent}$$

Reduced row echelon form

An $m \times n$ matrix A is in reduced row echelon form provided:

Reduced row echelon form

An $m \times n$ matrix A is in reduced row echelon form provided:

- A is in row echelon form.
- Each pivot (leading entry) in A is 1.
- Pivot is the only nonzero entry in a pivot column.

Notation: $\operatorname{Rref}(A)$ = reduced row echelon form of *A*.

Reduced row echelon form

An $m \times n$ matrix A is in reduced row echelon form provided:

- A is in row echelon form.
- Each pivot (leading entry) in A is 1.
- Pivot is the only nonzero entry in a pivot column.

Notation: $\operatorname{Rref}(A) =$ reduced row echelon form of *A*.

Matrices in echelon form:

(日) (四) (E) (E) (E) (E)

Gauss-Jordan elimination and rref

Forward GE : $m \times n$ matrix $A \longrightarrow \operatorname{Ref}(A)$. Backward GE: $\operatorname{Ref}(A) \longrightarrow \operatorname{Rref}(A)$.

Gauss-Jordan elimination and rref

Forward GE : $m \times n$ matrix $A \longrightarrow \operatorname{Ref}(A)$. Backward GE: $\operatorname{Ref}(A) \longrightarrow \operatorname{Rref}(A)$.

Backward GE:

$$\begin{bmatrix} p & * & * & * & * \\ 0 & 0 & p & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} p & * & 0 & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & * & 0 & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Gauss-Jordan elimination and rref

Forward GE : $m \times n$ matrix $A \longrightarrow \operatorname{Ref}(A)$. Backward GE: $\operatorname{Ref}(A) \longrightarrow \operatorname{Rref}(A)$.

Backward GE:

$$\begin{bmatrix} p & * & * & * & * \\ 0 & 0 & p & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} p & * & 0 & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & * & 0 & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Gauss-Jordan elimination = Forward GE followed by backward GE.

Gauss-Jordan elimination: $m \times n$ matrix $A \longrightarrow \operatorname{Rref}(A)$.

Theorem: Reduced row echelon form of an $m \times n$ matrix A is unique.

Example: Gauss-Jordan elimination

Forward GE:
$$A \to \operatorname{Ref}(A)$$

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \to \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Example: Gauss-Jordan elimination

Forward GE:
$$A \to \operatorname{Ref}(A)$$

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \to \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Backward GE: $\operatorname{Ref}(A) \to \operatorname{Rref}(A)$

$$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}.$$

14/31

イロト イポト イヨト イヨト 二日

Rank of a matrix

Rank: The rank of an $m \times n$ matrix A, denoted by rank(A), is the number of pivots in Rref(A).

$$A := \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rank}(A) = 2.$$

Rank of a matrix

Rank: The rank of an $m \times n$ matrix A, denoted by rank(A), is the number of pivots in Rref(A).

$$A := \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rank}(A) = 2.$$

Fact:

- rank(A) = number of pivot columns in Rref(A) = number of nonzero rows in Rref(A).
- rank(A) = number of pivot columns in Ref(A) = number of nonzero rows in Ref(A).

Leading and free variable:

Free variable: A variable in a system Ax = b is called a free variable if the system has a solution for every value of that variable.

$$\begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 2 & 1 & 4 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_1 = -1 - 3x_3 \\ x_2 = 3 + 2x_3 \\ x_3 : \text{ free} \end{array}$$

Leading and free variable:

Free variable: A variable in a system Ax = b is called a free variable if the system has a solution for every value of that variable.

$$\begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 2 & 1 & 4 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_1 = -1 - 3x_3 \\ x_2 = 3 + 2x_3 \\ x_3 : \text{ free} \end{array}$$

Leading variables: Let $[A \mid b] \longrightarrow \operatorname{Rref}([A \mid b]) =: [R \mid d]$. Then the variables corresponding to the pivot columns of R are called leading variable.

Theorem: The number of free variables in a consistent $m \times n$ system Ax = b is given by $n - \operatorname{rank}(A)$.
Leading and free variable:

Free variable: A variable in a system Ax = b is called a free variable if the system has a solution for every value of that variable.

$$\begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 2 & 1 & 4 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & | & -1 \\ 0 & 1 & -2 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_1 = -1 - 3x_3 \\ x_2 = 3 + 2x_3 \\ x_3 : \text{ free} \end{array}$$

Leading variables: Let $[A \mid b] \longrightarrow \operatorname{Rref}([A \mid b]) =: [R \mid d]$. Then the variables corresponding to the pivot columns of R are called leading variable.

Theorem: The number of free variables in a consistent $m \times n$ system Ax = b is given by $n - \operatorname{rank}(A)$.

Proof: # Free variables = # non-pivot columns = $n - \operatorname{rank}(A)$.

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ system Ax = b

• is inconsistent if $rank(A) \neq rank([A \mid b])$.

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ system Ax = b

- is inconsistent if $rank(A) \neq rank([A \mid b])$.
- consistent if rank(A) = rank([A | b]).

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ system Ax = b

- is inconsistent if $rank(A) \neq rank([A \mid b])$.
- consistent if rank(A) = rank([A | b]).
- has unique solution if rank(A) = rank([A | b]) = n.

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ system Ax = b

- is inconsistent if $rank(A) \neq rank([A \mid b])$.
- consistent if rank(A) = rank([A | b]).
- has unique solution if rank(A) = rank([A | b]) = n.
- infinitely many solutions if rank(A) = rank([A | b]) < n.

Fact: An $m \times n$ homogeneous system Ax = 0 has

- infinitely many solutions if rank(A) < n,
- unique (trivial) solution if rank(A) = n.

Fact: An $m \times n$ system Ax = b

- is inconsistent if $rank(A) \neq rank([A \mid b])$.
- consistent if rank(A) = rank([A | b]).
- has unique solution if rank(A) = rank([A | b]) = n.
- infinitely many solutions if rank(A) = rank([A | b]) < n.

$$\left[\begin{array}{cc|c} 1 & 2 & 1 \\ 1 & 2 & k \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 2 & 1 \\ 0 & 0 & k-1 \end{array}\right] \Rightarrow \text{ inconsistent if } k \neq 1.$$

Elementary matrices

TypeOperationInverse operationI
$$R_i \longrightarrow \alpha R_i$$
 $R_i \longrightarrow \frac{1}{\alpha} R_i$ II $cR_i + R_j \longrightarrow R_j$ $-cR_i + R_j \longrightarrow R_j$ III $R_i \leftrightarrow R_j$ $R_i \leftrightarrow R_j$

Elementary matrices

TypeOperationInverse operationI
$$R_i \longrightarrow \alpha R_i$$
 $R_i \longrightarrow \frac{1}{\alpha} R_i$ II $cR_i + R_j \longrightarrow R_j$ $-cR_i + R_j \longrightarrow R_j$ III $R_i \leftrightarrow R_j$ $R_i \leftrightarrow R_j$

An elementary matrix is a matrix that is obtained by performing an elementary row operation on the identity matrix.

Elementary matrices

TypeOperationInverse operationI
$$R_i \longrightarrow \alpha R_i$$
 $R_i \longrightarrow \frac{1}{\alpha} R_i$ II $cR_i + R_j \longrightarrow R_j$ $-cR_i + R_j \longrightarrow R_j$ III $R_i \leftrightarrow R_j$ $R_i \leftrightarrow R_j$

An elementary matrix is a matrix that is obtained by performing an elementary row operation on the identity matrix.

Type I:
$$E_2(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow E_2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ \alpha x_2 \\ x_3 \end{bmatrix}.$$

 $E_2(\alpha)A = \begin{bmatrix} \operatorname{row}_1(A) \\ \alpha \operatorname{row}_2(A) \\ \operatorname{row}_3(A) \end{bmatrix} =$ multiply 2nd row of A by $\alpha.$
 $(E_2(\alpha))^{-1} = E_2(\frac{1}{\alpha}).$

18/31

Type II elementary matrices

Type II :
$$E_{13}(2) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = l_3 + 2e_3e_1^T$$

The matrix E_{13} is obtained by performing $2R_1 + R_3 \rightarrow R_3$ on I_3 .

Type II elementary matrices

Type II :
$$E_{13}(2) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = l_3 + 2e_3e_1^T$$

The matrix E_{13} is obtained by performing $2R_1 + R_3 \rightarrow R_3$ on I_3 .

$$E_{13}(2)\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}x_1\\x_2\\x_3+2x_1\end{bmatrix} \Rightarrow E_{13}A = \begin{bmatrix}\operatorname{row}_1(A)\\\operatorname{row}_2(A)\\\operatorname{row}_3(A)+2\operatorname{row}_1(A)\end{bmatrix}$$

 $(E_{13}(2))^{-1} = E_{13}(-2)$ corresponds to $-2R_1 + R_3 \rightarrow R_3$ on I_3 .

<ロト <回 > < 臣 > < 臣 > < 臣 > 臣) Q () 19/31

•

Type III elementary matrices

Type III : E_{ij} is obtained by performing $R_i \leftrightarrow R_j$ on I.

$$E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow E_{23} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_2 \end{bmatrix} \Rightarrow E_{23}A = \begin{bmatrix} \operatorname{row}_1(A) \\ \operatorname{row}_3(A) \\ \operatorname{row}_2(A) \end{bmatrix}$$

Type III elementary matrices

Type III : E_{ij} is obtained by performing $R_i \leftrightarrow R_j$ on I.

$$E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow E_{23} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_2 \end{bmatrix} \Rightarrow E_{23}A = \begin{bmatrix} \operatorname{row}_1(A) \\ \operatorname{row}_3(A) \\ \operatorname{row}_2(A) \end{bmatrix}.$$

 $(E_{ij})^{-1} = E_{ij}$ corresponds to row operation $R_i \leftrightarrow R_j$ on *I*.

Observation: Inverse of an elementary matrix is also an elementary matrix of same type.

Row operation via elementary matrices

Crux of the matter:

- Type I: Multiplying E_i(c) to A giving E_i(c)A amounts to performing the row operation cR_i → R_i on A.
- Type II: Multiplying $E_{ij}(c)$ to A giving $E_{ij}(c)A$ amounts to performing the row operation $cR_i + R_j \rightarrow R_j$ on A..
- Type III: Multiplying E_{ij} to A giving E_{ij}A amounts to performing the row operation R_i ↔ R_j on A.

Row operation via elementary matrices

Crux of the matter:

- Type I: Multiplying E_i(c) to A giving E_i(c)A amounts to performing the row operation cR_i → R_i on A.
- Type II: Multiplying $E_{ij}(c)$ to A giving $E_{ij}(c)A$ amounts to performing the row operation $cR_i + R_j \rightarrow R_j$ on A..
- Type III: Multiplying E_{ij} to A giving E_{ij}A amounts to performing the row operation R_i ↔ R_j on A.

Two matrices A and B are said to be row equivalent if A can be transformed to B by elementary row operations.

Fact: The matrices A and B are row equivalent \iff $B = E_k \cdots E_2 E_1 A$ for some elementary matrices E_1, E_2, \cdots, E_k .

Elementary matrices and echelon form

Forward GE: $m \times n$ matrix $A \longrightarrow$ row echelon form $\operatorname{Ref}(A)$

 $\operatorname{Ref}(A) = E_p \cdots E_2 E_1 A$ for some elementary matrices E_1, \ldots, E_p .

₩

Elementary matrices and echelon form

Forward GE: $m \times n$ matrix $A \longrightarrow$ row echelon form $\operatorname{Ref}(A)$ \Downarrow $\operatorname{Ref}(A) = E_p \cdots E_2 E_1 A$ for some elementary matrices E_1, \dots, E_p . Gauss-Jordan: $A \longrightarrow$ reduced row echelon form $\operatorname{Rref}(A)$ \Downarrow

 $\operatorname{Rref}(A) = E_k \cdots E_2 E_1 A$ for some elementary matrices E_1, \ldots, E_k .

Elementary matrices and echelon form

Forward GE: $m \times n$ matrix $A \longrightarrow$ row echelon form $\operatorname{Ref}(A)$ \Downarrow $\operatorname{Ref}(A) = E_p \cdots E_2 E_1 A$ for some elementary matrices E_1, \ldots, E_p . Gauss-Jordan: $A \longrightarrow$ reduced row echelon form $\operatorname{Rref}(A)$

 $\operatorname{Rref}(A) = E_k \cdots E_2 E_1 A$ for some elementary matrices E_1, \ldots, E_k .

∜

Fact: Let $[A \mid b] \longrightarrow \operatorname{Ref}([A \mid b]) =: [U \mid d]$. Then the system Ax = b and Ux = d are equivalent.

An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. Then B is called an inverse of A.

An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. Then B is called an inverse of A.

• We can talk of invertibility only for square matrices.

An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. Then B is called an inverse of A.

• We can talk of invertibility only for square matrices.

• For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}.$$

An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. Then B is called an inverse of A.

• We can talk of invertibility only for square matrices.

• For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}.$$

• The zero matrix **O** is never invertible.

An $n \times n$ matrix A is said to be invertible if there exists a matrix B such that $AB = I_n = BA$. Then B is called an inverse of A.

• We can talk of invertibility only for square matrices.

• For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

• The zero matrix **O** is never invertible.

Fact: If A is an invertible matrix then its inverse is unique and is denoted by A^{-1} .

Characterization of invertibility

Theorem: Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- A is invertible.
- **2** Ax = b has a unique solution for every b in \mathbb{R}^n .
- **3** Ax = 0 has only the trivial solution.
- The reduced row echelon form of A is I_n .
- A is a product of elementary matrices.

•
$$\operatorname{rank}(A) = n$$

Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.

• If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.

2 The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.

3 The matrix A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T$.

For any non-negative integer k, the matrix A^k is invertible, and (A^k)⁻¹ = (A⁻¹)^k.

Properties of invertible matrices

Fact: Let A and B be two invertible matrices of the same size.

• If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.

2 The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.

• The matrix A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T$.

For any non-negative integer k, the matrix A^k is invertible, and (A^k)⁻¹ = (A⁻¹)^k.

Let $A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$ then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0 then A is not invertible.

Gauss-Jordan method for computing inverse

Exercise: Let A and B be $n \times n$ matrices. If AB = I or BA = I, then show that A is invertible and $B = A^{-1}$.

Gauss-Jordan method for computing inverse

Exercise: Let A and B be $n \times n$ matrices. If AB = I or BA = I, then show that A is invertible and $B = A^{-1}$.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \ldots, E_p are elementary matrices.

Moral: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Gauss-Jordan method for computing inverse

Exercise: Let A and B be $n \times n$ matrices. If AB = I or BA = I, then show that A is invertible and $B = A^{-1}$.

Fact: Let A be an $n \times n$ matrix. If $E_p \cdots E_2 E_1 A = I_n$ then $A^{-1} = E_p \cdots E_2 E_1$, where E_1, \ldots, E_p are elementary matrices.

Moral: Elementary row operations that transform A to I_n transform I_n to A^{-1} .

Gauss-Jordan method:

 $[A \mid I_n] \longrightarrow [I_n \mid X] \Rightarrow A$ is invertible and $A^{-1} = X$.

26 / 31

Let
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$$
. Then $[A \mid I] \to [I \mid A^{-1}]$ gives

Let
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$$
. Then $[A \mid I] \rightarrow [I \mid A^{-1}]$ gives
 $\begin{bmatrix} 1 & 2 & 3 \mid 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \mid 1 & 0 & 0 \end{bmatrix}$

Let
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$$
. Then $[A \mid I] \to [I \mid A^{-1}]$ gives

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 7 & | & 0 & 1 & 0 \\ 3 & 7 & 9 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 4 & -3 & 1 \\ 0 & 1 & 0 & | & -3 & 0 & 1 \\ 0 & 0 & 1 & | & 1 & -1 \end{bmatrix}$$

Let
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$$
. Then $[A \mid I] \rightarrow [I \mid A^{-1}]$ gives

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 7 & | & 0 & 1 & 0 \\ 3 & 7 & 9 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 4 & -3 & 1 \\ 0 & 1 & 0 & | & -3 & 0 & 1 \\ 0 & 0 & 1 & | & 1 & -1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \left[egin{array}{ccc} 4 & -3 & 1 \ -3 & 0 & 1 \ 1 & 1 & -1 \end{array}
ight].$$

LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow \operatorname{Ref}(A)$ without row interchange then A has an LU factorization.

LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow \text{Ref}(A)$ without row interchange then A has an LU factorization.

- $E_{\rho} \dots E_2 E_1 A = \operatorname{Ref}(A) \Rightarrow A = LU.$
- $L := E_1^{-1} E_2^{-1} \dots E_p^{-1}$ and $U := \operatorname{Ref}(A)$.
- Each E_j is unit lower triangular and Type-II $\Rightarrow L$ is unit lower triangular.
LU Factorization

An $n \times n$ matrix A has an LU factorization if A = LU, where U is upper triangular and L is unit lower triangular (diagonals are 1).

Fact: If $A \longrightarrow \text{Ref}(A)$ without row interchange then A has an LU factorization.

- $E_p \ldots E_2 E_1 A = \operatorname{Ref}(A) \Rightarrow A = LU.$
- $L := E_1^{-1} E_2^{-1} \dots E_p^{-1}$ and $U := \operatorname{Ref}(A)$.
- Each E_j is unit lower triangular and Type-II $\Rightarrow L$ is unit lower triangular.

Solution of Ax = b via LU factorization (if exists):

- Compute A = LU.
- Solve Ly = b for y forward substitution.
- Solve Ux = y for x back substitution.

イロト 不得 トイヨト イヨト ヨー うらの

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Set $m_{21} := a_{21}/a_{11}$ and $m_{31} := a_{31}/a_{11}$

when $a_{11} \neq 0$ (pivot) and define

$$E_1 := \begin{bmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } E_2 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m_{31} & 0 & 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

29/31

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Set $m_{21} := a_{21}/a_{11}$ and $m_{31} := a_{31}/a_{11}$

when $a_{11} \neq 0$ (pivot) and define

$$E_1 := \begin{bmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } E_2 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m_{31} & 0 & 1 \end{bmatrix}.$$

Then

$$E_{2}E_{1}A = E_{2}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\0 & a_{22}^{(1)} & a_{23}^{(1)}\\a_{31} & a_{32} & a_{33}\end{bmatrix} = \begin{bmatrix}a_{11} & a_{12} & a_{13}\\0 & a_{22}^{(1)} & a_{13}^{(1)}\\0 & a_{32}^{(1)} & a_{33}^{(1)}\end{bmatrix}$$

Set $m_{32}:=a_{32}^{(1)}/a_{22}^{(1)}$ if $a_{22}^{(1)}
eq 0$ (pivot) and define

(ロ) (同) (E) (E) (E) (O)(O)

•

$$E_{3} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{bmatrix}.$$
 Then we have
$$E_{3}E_{2}E_{1}A = E_{3} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} = U.$$

<ロト < 部ト < 言ト < 言ト 言 の Q () 30 / 31

$$E_{3} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{bmatrix}. \text{ Then we have}$$

$$E_{3}E_{2}E_{1}A = E_{3} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} = U.$$
.

Hence
$$A = LU$$
, where $L = E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix}$

٠

Examples: LU factorization

Let
$$A := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
. Then $A = LU$, where
 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Examples: LU factorization

Let
$$A := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
. Then $A = LU$, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.
Let $A := \begin{bmatrix} 2 & 4 & -1 \\ -4 & -5 & 3 \\ 2 & -5 & -4 \end{bmatrix}$. Then $A = LU$, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

*** End ***

٠

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで