MA251 Computer Organization and Architecture [3-0-0-6]

Lecture 5: Decoder, Demultiplexer, Encoder, and Multiplexer.. Spring 2011 Partha Sarathi Mandal

Decoders

- *n* inputs, 2ⁿ outputs
- Each output represents a minterm of an *n* variable function.
- The output that corresponds to the minterm that appears on the inputs is asserted (low or high depending on the particular decoder), all other outputs are deasserted.

3-to-8 line decoder

• How to extent a 2-to-4 line decoder to 3-to-8 line decoder ?

Decoders with an enable

• Some decoders have enable inputs. If the enable is not asserted, all outputs are inactive

s ₁ s ₀	EN	$\mathbf{D}_3\mathbf{D}_2\mathbf{D}_1\mathbf{D}_0$
0 0	1	0 0 0 1
0 1	1	0 0 1 0
1 0	1	0 1 0 0
1 1	1	1 0 0 0
X X	0	0 0 0 0

Decoder with an enable

- 2-to-4 decoder with an enable input constructed with NAND gates.
 - If enable input E=1 all outputs are equal to 1
 - If E=0 the circuit operates as a decoder with complemented outputs.

			-				
Ε	A	В	D_0	D_1	D_2	<i>D</i> ₃	_
1.	X	X	, 1	1	1	1	_
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	1	0	
							_

A decoder with an enable

- 2-to-4 decoder with an enable input constructed with NAND gates.
 - If enable input E=1 all outputs are equal to 1
 - If E=0 the circuit operates as a decoder with complemented outputs.
 - The small circle at input E indicates that the decoder is enabled when E=0 in the block diagram.

Demultiplexers

- A <u>decoder</u> with an <u>enable input</u> can function as a <u>Demultiplexer</u>.
- A demultiplexer is a circuit that receives information on a single line and transmits this information on one of 2ⁿ possible output lines.
- Selection of a specific output line is controlled by the bit values of n selection lines.
- E line is taken as a data input line and line A & B are taken as the selection lines.
- Example from truth table, AB=10 output D₂ will be same as the input E

Decoder/Demultiplexers

- Decoder/Demultiplexer circuits can be connected together to form a large decoder circuit.
- Show how 4 X 16 decoder can be constructed with 3 X 8 decoders connected with enable inputs ?
- When w=0, the top decoder is enabled and the other is disabled.
- Bottom decoder outputs are all 0's & top outputs generate minterms 0000 to 0111
- When w=1 bottom decoder outputs generate minterms 1000 to 1111
- Enable lines are a convenient feature for connecting two or more IC packages for the purpose of expanding the digital function into a similar function with more inputs and outputs.

Decoder

• Decoders can be used to implement logic functions as follows:

 A large size of decoder can be constructed by cascading smaller decoders with enable lines to form a decoder tree.

How to build a 3X8 decoder using 2X4 decoders?

Encoder

- Encoder: Combinational logic building block with opposite functionality of decoder.
 - Outputs binary encoding for input signal that is 1
 - 4x2 encoder would have four inputs and 2 outputs.

- What if two inputs are 1?
 - Can use a priority encoder
 - Gives priority to the highest input that is 1, and outputs binary encoding for that input
 - Example: If d3=1 and d1=1, will output e0=1 and e1=1 because d3 has priority

Priority encoder

 An example of a single bit 4 to 2 encoder is shown, where highest-priority inputs are to the left and "x" indicates an irrelevant value - i.e. any input value there yields the same output since it is superseded by higherpriority input.

u 5	uz	ar	au	ar	au	V	
0	0	0	0	х	Х	0	
0	0	0	х	0	0	1	
0	0	1	х	0	1	1	
0	1	х	х	1	0	1	
1	х	х	х	1	1	1	

 If the input n is active, all lower inputs (n-1..0) are ignored:

Priority encoder

 $A_0 = D_3 + D_1 \overline{D}_2$ $A_1 = D_2 + D_3$ $V = D_0 + D_1 + D_2 + D_3$

D3	D2	D1	D0	A1	A0	V	
0	0	0	0	Х	Х	0	
0	0	0	х	0	0	1	
0	0	1	х	0	1	1	
0	1	х	х	1	0	1	
1	x	x	х	1	1	1	

Priority encoder circuit

 $A_0 = D_3 + D_1 \overline{D}_2$ $A_1 = D_2 + D_3$ $V = D_0 + D_1 + D_2 + D_3$

Encoder

Following example has shown, Octal-to-binary encoding

Truth Table of Octal-to-Binary Encoder

		s	Dutou					uts	Inp			
$x = D_4 + D_5 + D_6 + $	<i>D</i> ₁	z	y y	X	D7	<i>D</i> ₆	<i>D</i> 5	<i>D</i> 4	D_3	<i>D</i> ₂	<i>D</i> ₁	<i>D</i> ₀
	D ₂	0	0	0	0	0	0	0	0	0	0	1
++		1	Õ	Ő	Õ	0	0	0	0	0	1)
$ \qquad \qquad$		0	1	Ō	0	0	0	0	0	1	0)
	D ₄	ĩ	1	Ō	0	0	0	0	1	0	0)
	D ₅	Ô	0		0	0	0	1	0	0	0)
		1	Ō	1	0	0	1	0	0	0	0)
$z = D_1 + D_2 + D_5 + $	D ₆	Ô	1	1	0	1	Ó	0	0	0	0)
	D ₇	1	1	1	1	0	0	0	0	0	0	0

Multiplexor (MUX)

A multiplexer is a device which has

- a number of *inputlines*
- a number of selectionlines
- one *outputline*
- It steers one of 2ⁿ inputs to a single output line, using n selection lines. Also known as a data selector.

Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux needs 2 select inputs to indicate which input to route through
 - 8 input mux needs 3 select inputs
 - N inputs $\rightarrow \log_2(N)$ selects
 - Like a railyard switch

A 2-input multiplexor

• Truth table for a multiplexor with 2 data inputs d_0 and d_1 and one control input *c* is as follows:

logic circuit involving only 4 gates

schematic symbol

4-input multiplexor

Y

 I_0

 I_1

 I_2

 I_3

Truth table for a 4-to-1 multiplexer:

\mathbf{I}_{0}	\mathbf{I}_1	I_2	I_3	S_1	\mathbf{S}_{0}	Y	S_1	
d ₀	d_1	d_2	d3	0	0	d ₀	0	
d_0	d_1	d_2	d3	0	1	d_1	0	
d_0	d_1	d_2	d3	1	0	d_2	1	
d_0	d_1	d_2	d ₃	1	1	d3	1	

4-input multiplexor

Gate-level design for a 4-input multiplexor

 $f = (d_0 c'_1 c'_0) + (d_1 c'_1 c_0) + (d_2 c_1 c'_0) + (d_3 c_1 c_0)$

Multiplexer

- Helps share a single communication line among a number of devices.
- At any time, only one source and one destination can use the communication line.