MA 201 Complex Analysis Lecture 15: Residues Theorem

Residues

Question: Let γ is a simple closed contour in a simply connected domain D and let z_0 doesn't lie on γ . If f has singularity only at z_0 then what could be the value for $\int_{\gamma} f(z) dz$?

 Recall: Laurent's Theorem: Suppose that 0 ≤ r < R. Let f be analytic in the annulus A = ann(z₀, r, R). Then

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

where the convergence is absolute and uniform in $ann(z_0, r_1, R_1)$ if $r < r_1 < R_1 < R$. The coefficients are given by

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=s} \frac{f(z)}{(z-z_0)^{n+1}} dz$$

for any r < s < R.

Moreover, this series is unique.

• Put n = -1. The answer of the above question is $2\pi i a_{-1}$.

Definition: Let f have an isolated singularity at $z = z_0$ and let

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

be the Laurent series expansion about z_0 then the residue at f is the coefficient a_{-1} .

- We denote $\operatorname{Res}(f, z_0) = a_{-1}$.
- If f has a removable singularity at $z = z_0$ then $\text{Res}(f, z_0) = 0$.

Residue at poles

• If f has a simple pole (pole of order one) at $z = z_0$ then

$$f(z) = \frac{a_{-1}}{z - z_0} + \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

in this case $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$.

• If f has a pole of order m at $z = z_0$ then $f(z) = \frac{g(z)}{(z-z_0)^m}$, $g(z_0) \neq 0$. Since g is analytic at z_0 we can write

$$g(z) = b_0 + b_1(z - z_0) + b_2(z - z_0)^2 + \cdots$$

So

$$f(z) = \frac{g(z)}{(z-z_0)^m} = \frac{b_0}{(z-z_0)^m} + \frac{b_1}{(z-z_0)^{m-1}} + \cdots + \frac{b_{m-1}}{(z-z_0)} + \sum_{k=0}^{\infty} b_{m+k}(z-z_0)^k.$$

Now $\operatorname{Res}(f, z_0) = b_{m-1} = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} g(z).$

Residue at poles

• If f has a pole of order m at $z = z_0$ then

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [f(z)(z-z_0)^m].$$

• Let
$$f(z) = \frac{z}{(z-1)(z+1)^2}$$
 then
 $\operatorname{Res}(f,1) = \lim_{z \to 1} f(z)(z-1) = \frac{1}{4}$

and

$$\operatorname{Res}(f,-1) = \lim_{z \to -1} \frac{d}{dz} [f(z)(z+1)^2] = -\frac{1}{4}.$$

Cauchy residue theorem: Let f be analytic inside and on a simple closed contour γ (positive orientation) except for finite number of isolated singularities $a_1, a_2 \cdots a_n$. If the points $a_1, a_2 \cdots a_n$ does not lie on γ then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, a_k).$$

Proof. Apply Cauchy's theorem for multiply connected domain.

• $\int_{\gamma} f(z) dz = (2\pi i) \times$ sum of the residues of f at all singular points that are enclosed in γ .

• $\int_{|z|=1} \frac{1}{z(z-2)} dz = 2\pi i \times \text{Res}(f, 0)$. (The point z = 2 does not lie inside unit circle.)

Definition: A function f is said to be **meromorphic** in a domain D if f is analytic throughout D except for poles.

- Suppose f is meromorphic inside a closed contour γ, analytic on γ has no zero on γ. Let Γ be the image of γ under f i.e. Γ = f(γ) then Γ is a closed contour (not necessarily simple).
- As z traverses γ in positive direction, its image w = f(z) traverses Γ in a particular direction that determines the orientation of Γ.
- Fix f(z₀) = w₀ ∈ Γ. Let φ₀ = arg w₀. Take w ∈ Γ. Vary arg w continuously starting with the value φ₀.
- When w returns to the point w_0 (in this case z traverses from z_0 to z_0), arg w assumes a particular value of arg w_0 (say ϕ_1).
- The change in arg w (independent of the point w₀) is φ₁ φ₀ which is an integral multiple of 2π.
- The integer ¹/_{2π}(φ₁ φ₀) represents orientation and the number of times the point w winds around the origin called the winding number.

Question: Can we determine the winding number using the number of zeros and poles of f lying interior to a closed contour γ ?

The Answer is given by Argument principle.

Argument principle: Suppose a function f(z) is meromorphic in the domain interior to a positively oriented simple closed contour γ such that

- f(z) is analytic and nonzero on γ
- Z = No. of **zeros** of *f* counted according to multiplicity and P = No. of **poles** of *f* counted according to multiplicity.

Then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)}\,dz=(Z-P).$$

Argument Principle

The contour integral $\int_{\gamma} \frac{f'(z)}{f(z)} dz$ can be interpreted in following (informal) ways:

 as the total change in the argument of f(z) as z travels around γ, explaining the name of the theorem; since

$$\frac{d}{dz}\log(f(z))=\frac{f'(z)}{f(z)},$$

then the integration of $\frac{f'(z)}{f(z)}$ over γ gives

$$\log f|_{\gamma} = [\log |f(z)| + i \arg f(z)]|_{\gamma}.$$

• as $2\pi i$ times the winding number of the path $f(\gamma)$ around the origin, using the substitution w = f(z) one has

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{f(\gamma)} \frac{1}{w} dw.$$

Argument Principle

Proof. Suppose that f is analytic and has a zero of order m at z = a. So $f(z) = (z - a)^m g(z)$ where $g(a) \neq 0$. So $\frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}$. So by residue theorem,

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 2\pi i m.$$

Suppose that f has a pole of order n at z = a. So $f(z) = (z - a)^{-n}g(z)$ where $g(a) \neq 0$. So $\frac{f'(z)}{f(z)} = \frac{-n}{z-a} + \frac{g'(z)}{g(z)}$. So by residue theorem,

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (-n).$$

Combining the above two results we have

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (Z - P).$$

• Evaluate:
$$\int_{|z-\frac{\pi}{2}|=1}^{\frac{\pi}{2}} \tan z \, dz.$$

• Evaluate:
$$\int_{|z|=1}^{\frac{\pi}{2}} \frac{dz}{\sin z}.$$
 [Hint. $f(z) = \tan(z/2)$]

Theorem: Suppose f, g be two analytic functions inside and on a simple closed contour γ such that |f(z)| > |g(z)| at each point on γ . Then f(z) and f(z) + g(z) have same number of zeros, counted according to their multiplicity inside γ .

Example: Determine the number of zeros of the equation $z^7 - 4z^3 + z - 1 = 0$ inside the circle |z| = 1.

Take $f(z) = -4z^3$; $g(z) = z^7 + z - 1$. Then |f(z)| = 4 and $|g(z)| \le 3$ when |z| = 1. Since f has three zeros inside |z| = 1, by Rouché's theorem, the equation $z^7 - 4z^3 + z - 1 = 0$ has three zeros inside the circle |z| = 1.