MA 201 Complex Analysis Lecture 10: Cauchy Integral Formula

Theorem Let C_1 and C_2 be two simple closed positively oriented contours such that C_1 lies interior to C_2 . If f is analytic in a domain D that contains both C_1 and C_2 and the region between them, then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Proof. Assume that both C_1 and C_2 have positive (counterclockwise) orientation. We construct two disjoint contours or cuts L_1 and L_2 that join C_1 to C_2 . The contour C_1 is cut into two contours C_1^* and C_1^{**} and the C_2 is cut into two contours C_2^* and C_2^{**} .

The function f will be analytic on a simply connected domain D_1, D_2 containing K_1, K_2 respectively.

By Cauchy's theorem,

$$\int_{K_1} f(z)dz = \int_{k_2} f(z)dz = 0.$$

Also $K_1 + K_2 = C_2^* + C_2^{**} - C_1^* - C_1^{**} = C_2 - C_1$. Thus

$$\int_{K_1+K_2} f(z) dz = \int_{C_2-C_1} f(z) dz = 0$$

this implies that

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Example: If C is a positively oriented simple closed contour surrounding the origin then

$$\int_C \frac{1}{z} dz = 2\pi i$$

By Cauchy's theorem,

$$\int_{K_1} f(z)dz = \int_{k_2} f(z)dz = 0.$$

Also $K_1 + K_2 = C_2^* + C_2^{**} - C_1^* - C_1^{**} = C_2 - C_1$. Thus

$$\int_{K_1+K_2} f(z) dz = \int_{C_2-C_1} f(z) dz = 0$$

this implies that

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Example: If C is a positively oriented simple closed contour surrounding the origin then

$$\int_C \frac{1}{z} dz = 2\pi i$$

Theorem Let $C, C_1, C_2 \cdots, C_n$ be simple closed positively oriented contours such that C_k lies interior to C for $k = 1, 2, \cdots, n$ and C_k has no point in common with the interior of C_j if $k \neq j$. Let f be analytic on a domain D that contains all the contour and the region between C and $C_1 + C_2 + \cdots + C_n$. Then

$$\int_{C} f(z)dz = \sum_{k=1}^{n} \int_{C_{k}} f(z)dz.$$

Theorem Let f be analytic on a simply connected domain D. Suppose that $z_0 \in D$ and C is a simple closed curve oriented in the counterclockwise in D that encloses z_0 . Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy Integral Formula).

Proof. Let $C(z_0, r)$ denotes the circle of radius r around z_0 for a sufficiently small r > 0 then

$$\begin{split} \left| \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \right| &= \left| \frac{1}{2\pi i} \int_{C(z_{0}, r)} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right| \\ &= \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_{0} + re^{i\theta}) - f(z_{0})}{re^{i\theta}} ire^{i\theta} d\theta \right| \\ &\leq \frac{1}{2\pi} 2\pi \times \sup_{\theta \in [0, 2\pi]} |f(z_{0} + re^{i\theta}) - f(z_{0})| \\ &\text{(by ML inequality)}. \end{split}$$

As f is continuous it follows that the righthand side goes to zero as r tends to

Theorem Let f be analytic on a simply connected domain D. Suppose that $z_0 \in D$ and C is a simple closed curve oriented in the counterclockwise in D that encloses z_0 . Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy Integral Formula).

Proof. Let $C(z_0, r)$ denotes the circle of radius r around z_0 for a sufficiently small r > 0 then

$$\begin{split} \left| \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \right| &= \left| \frac{1}{2\pi i} \int_{C(z_{0}, r)} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right| \\ &= \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_{0} + re^{i\theta}) - f(z_{0})}{re^{i\theta}} ire^{i\theta} d\theta \right| \\ &\leq \frac{1}{2\pi} 2\pi \times \sup_{\theta \in [0, 2\pi]} |f(z_{0} + re^{i\theta}) - f(z_{0})| \\ &\text{(by ML inequality)}. \end{split}$$

As f is continuous it follows that the righthand side goes to zero as r tends to

Theorem Let f be analytic on a simply connected domain D. Suppose that $z_0 \in D$ and C is a simple closed curve oriented in the counterclockwise in D that encloses z_0 . Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy Integral Formula).

Proof. Let $C(z_0, r)$ denotes the circle of radius r around z_0 for a sufficiently small r > 0 then

$$\begin{aligned} \left| \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \right| &= \left| \frac{1}{2\pi i} \int_{C(z_{0}, r)} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right| \\ &= \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_{0} + re^{i\theta}) - f(z_{0})}{re^{i\theta}} ire^{i\theta} d\theta \right| \\ &\leq \frac{1}{2\pi} 2\pi \times \sup_{\theta \in [0, 2\pi]} |f(z_{0} + re^{i\theta}) - f(z_{0})| \\ &\text{(by ML inequality)}. \end{aligned}$$

As f is continuous it follows that the righthand side goes to zero as r tends to

Theorem Let f be analytic on a simply connected domain D. Suppose that $z_0 \in D$ and C is a simple closed curve oriented in the counterclockwise in D that encloses z_0 . Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy Integral Formula).

Proof. Let $C(z_0, r)$ denotes the circle of radius r around z_0 for a sufficiently small r > 0 then

$$\left| \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_0} dz - f(z_0) \right| = \left| \frac{1}{2\pi i} \int_{C(z_0, r)} \frac{f(z) - f(z_0)}{z - z_0} dz \right|$$

$$= \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{i\theta}) - f(z_0)}{re^{i\theta}} ire^{i\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi} 2\pi \times \sup_{\theta \in [0, 2\pi]} |f(z_0 + re^{i\theta}) - f(z_0)|$$
(by ML inequality).

As f is continuous it follows that the righthand side goes to zero as r tends to zero.

$$\int_{|z-i|=1} \frac{z^2}{z^2+1} dz = -\pi.$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^z}{z - 1} dz - \int_{C(0,2)} \frac{e^z}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^{z}}{z - 1} dz - \int_{C(0,2)} \frac{e^{z}}{z} dz$$

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^{z}}{z - 1} dz - \int_{C(0,2)} \frac{e^{z}}{z} dz$$

Theorem If f is analytic on a simply connected domain D then f has derivatives of all orders in D (which are then analytic in D). For any $z_0 \in D$

one has

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz,$$

where C is a simple closed contour (oriented counterclockwise) around z_0 in D.

Proof: By Cauchy's integral formula

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{2\pi i h} \int_C \left(\frac{f(z)}{z - z_0 - h} - \frac{f(z)}{z - z_0}\right) dz$$

$$(C \text{ is so chosen that the point } z_0 + h \text{ is enclosed by } C)$$

$$= \lim_{h \to 0} \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0 - h)(z - z_0)} dz.$$

Theorem If f is analytic on a simply connected domain D then f has derivatives of all orders in D (which are then analytic in D). For any $z_0 \in D$ one has

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz,$$

where C is a simple closed contour (oriented counterclockwise) around z_0 in D.

Proof: By Cauchy's integral formula

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{2\pi i h} \int_C \left(\frac{f(z)}{z - z_0 - h} - \frac{f(z)}{z - z_0}\right) dz$$

$$(C \text{ is so chosen that the point } z_0 + h \text{ is enclosed by } C)$$

$$= \lim_{h \to 0} \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0 - h)(z - z_0)} dz.$$

Theorem If f is analytic on a simply connected domain D then f has derivatives of all orders in D (which are then analytic in D). For any $z_0 \in D$ one has

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz,$$

where C is a simple closed contour (oriented counterclockwise) around z_0 in D.

Proof: By Cauchy's integral formula

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{2\pi i h} \int_C \left(\frac{f(z)}{z - z_0 - h} - \frac{f(z)}{z - z_0}\right) dz$$

$$(C \text{ is so chosen that the point } z_0 + h \text{ is enclosed by } C)$$

$$= \lim_{h \to 0} \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0 - h)(z - z_0)} dz.$$

So we need to prove that

$$\begin{split} & \left| \int_{C} \frac{f(z)}{(z - z_{0} - h)(z - z_{0})} dz - \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz \right| \\ = & \left| \int_{C} \frac{f(z)h}{(z - z_{0} - h)(z - z_{0})^{2}} dz \right| \to 0, \text{ as } h \to 0. \end{split}$$

- Let $|f(z)| \le M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- $\alpha \leq |z z_0| = |z z_0 h + h| \leq |z z_0 h| + |h|$.
- Hence for $|h| \leq \frac{\alpha}{2}$ we have $|z z_0 h| \geq \alpha |h| \geq \frac{\alpha}{2}$.

So we need to prove that

$$\left| \int_{C} \frac{f(z)}{(z - z_{0} - h)(z - z_{0})} dz - \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz \right|$$

$$= \left| \int_{C} \frac{f(z)h}{(z - z_{0} - h)(z - z_{0})^{2}} dz \right| \to 0, \text{ as } h \to 0.$$

- Let $|f(z)| \leq M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- Hence for $|h| \leq \frac{\alpha}{2}$ we have $|z z_0 h| \geq \alpha |h| \geq \frac{\alpha}{2}$.

So we need to prove that

$$\left| \int_{C} \frac{f(z)}{(z - z_{0} - h)(z - z_{0})} dz - \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz \right|$$

$$= \left| \int_{C} \frac{f(z)h}{(z - z_{0} - h)(z - z_{0})^{2}} dz \right| \to 0, \text{ as } h \to 0.$$

- Let $|f(z)| \leq M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- $\alpha \leq |z-z_0| = |z-z_0-h+h| \leq |z-z_0-h|+|h|$.
- Hence for $|h| \leq \frac{\alpha}{2}$ we have $|z z_0 h| \geq \alpha |h| \geq \frac{\alpha}{2}$.

So we need to prove that

$$\begin{split} &\left| \int_{C} \frac{f(z)}{(z - z_{0} - h)(z - z_{0})} dz - \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz \right| \\ = &\left| \int_{C} \frac{f(z)h}{(z - z_{0} - h)(z - z_{0})^{2}} dz \right| \to 0, \text{ as } h \to 0. \end{split}$$

- Let $|f(z)| \leq M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- $\alpha \leq |z-z_0| = |z-z_0-h+h| \leq |z-z_0-h|+|h|$.
- Hence for $|h| \leq \frac{\alpha}{2}$ we have $|z z_0 h| \geq \alpha |h| \geq \frac{\alpha}{2}$.

So we need to prove that

$$\left| \int_{C} \frac{f(z)}{(z - z_{0} - h)(z - z_{0})} dz - \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz \right|$$

$$= \left| \int_{C} \frac{f(z)h}{(z - z_{0} - h)(z - z_{0})^{2}} dz \right| \to 0, \text{ as } h \to 0.$$

- Let $|f(z)| \leq M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- $\alpha \leq |z-z_0| = |z-z_0-h+h| \leq |z-z_0-h|+|h|$.
- Hence for $|h| \le \frac{\alpha}{2}$ we have $|z z_0 h| \ge \alpha |h| \ge \frac{\alpha}{2}$.

Therefore

$$\Big|\int_C \frac{f(z)h}{(z-z_0-h)(z-z_0)^2}dz\Big| \leq \frac{M|h|I}{\frac{\alpha}{2}\alpha^2} = \frac{2M|h|I}{\alpha^3} \to 0,$$

as $h \rightarrow 0$.

By repeating exactly the same technique we get

$$f^{2}(z_{0}) = \frac{2!}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0})^{3}} dz$$

and so on.

Therefore

$$\Big|\int_C \frac{f(z)h}{(z-z_0-h)(z-z_0)^2}dz\Big| \leq \frac{M|h|I}{\frac{\alpha}{2}\alpha^2} = \frac{2M|h|I}{\alpha^3} \to 0,$$

as $h \rightarrow 0$.

By repeating exactly the same technique we get

$$f^{2}(z_{0}) = \frac{2!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{3}} dz$$

and so on.

$$\int_{|z|=1} e^{z} z^{-3} dz = i\pi.$$

$$\int_{|z-1|=5/2} \frac{1}{(z-4)(z+1)^4} dz = \frac{2\pi i}{3!} \frac{d^3}{dz^3} \left(\frac{1}{z-4}\right)\Big|_{z=-1}.$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\oint_{|z|=1} e^z z^{-3} dz = i\pi.$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$

$$\int_{|z|=1}^{\infty} e^{-z} \frac{dz - i\pi}{(z-4)(z+1)^4} dz = \frac{2\pi i}{3!} \frac{d^3}{dz^3} \left(\frac{1}{z-4}\right)\Big|_{z=-1}.$$

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n\geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ \\ 0, & z_0 \text{ lies out side the region enclosed by } C. \end{cases}$$