Complex Integration

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then, $\int_{\gamma_{1}} f(z) d z=i \pi$.

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then, $\int_{\gamma_{1}} f(z) d z=i \pi$.
- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then, $\int_{\gamma_{2}} f(z) d z=0$.

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then, $\int_{\gamma_{1}} f(z) d z=i \pi$.
- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then, $\int_{\gamma_{2}} f(z) d z=0$.
- In the above example γ_{1} and γ_{2} are two paths joining 1 and -1 . But the line integral along the paths γ_{1} and γ_{2} are NOT same.

Recall

Definition: Let $\gamma:[a, b] \rightarrow \mathbb{C}$, be a contour and $S \subset \mathbb{C}$ such that $\gamma \subset S$. If $f: S \rightarrow \mathbb{C}$ is a continuous function then the the contour integral (or line integral) of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then, $\int_{\gamma_{1}} f(z) d z=i \pi$.
- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then, $\int_{\gamma_{2}} f(z) d z=0$.
- In the above example γ_{1} and γ_{2} are two paths joining 1 and -1 . But the line integral along the paths γ_{1} and γ_{2} are NOT same.
- Question: When a line integral of f does not depend on path?

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{\gamma}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $\gamma(t)=a+r e^{i t}$ for $t \in[0,2 \pi]$ is the circle of radius r centered at a.

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{\gamma}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $\gamma(t)=a+r e^{i t}$ for $t \in[0,2 \pi]$ is the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z .
$$

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{\gamma}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $\gamma(t)=a+r e^{i t}$ for $t \in[0,2 \pi]$ is the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z .
$$

- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve and $a<c<b$. If $\gamma_{1}=\left.\gamma\right|_{[a, c]}$ and $\gamma_{2}=\left.\gamma\right|_{[c, b]}$ then $\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z$.

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{\gamma}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $\gamma(t)=a+r e^{i t}$ for $t \in[0,2 \pi]$ is the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z .
$$

- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve and $a<c<b$. If $\gamma_{1}=\left.\gamma\right|_{[a, c]}$ and $\gamma_{2}=\left.\gamma\right|_{[c, b]}$ then $\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z$.
- $\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z$.

Complex integration

Complex integration

- Let f be a piecewise continuous function defined on a set containing a cotour γ. If $|f(z)| \leq M$ for all $z \in \gamma$ and $L=$ length of γ then

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z\right| & \leq \mid \int_{a}^{b} f\left(\gamma(t) \gamma^{\prime}(t)|d t|\right. \\
& \leq \int_{a}^{b} \mid f\left(\gamma(t)| | \gamma^{\prime}(t) \mid d t\right. \\
& \leq M \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=M L . \quad \text { (ML-inequality) }
\end{aligned}
$$

Complex integration

- Let f be a piecewise continuous function defined on a set containing a cotour γ. If $|f(z)| \leq M$ for all $z \in \gamma$ and $L=$ length of γ then

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z\right| & \leq \mid \int_{a}^{b} f\left(\gamma(t) \gamma^{\prime}(t)|d t|\right. \\
& \leq \int_{a}^{b} \mid f\left(\gamma(t)| | \gamma^{\prime}(t) \mid d t\right. \\
& \leq M \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=M L . \quad \text { (ML-inequality) }
\end{aligned}
$$

- Let $\gamma(t)=2 e^{i t}, t \in\left[0, \frac{\pi}{2}\right]$ and $f(z)=\frac{z+4}{z^{3}-1}$. Then by ML-ineuqality

$$
\left|\int_{\gamma} f(z) d z\right| \leq \frac{6 \pi}{7}
$$

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f
 domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)

Proof. Let

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)
- Theorem: Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_{1} and z_{2} respectively. If $f: D \rightarrow \mathbb{C}$ is a continuous function with primitive $F: D \rightarrow \mathbb{C}$, then

$$
\int_{\gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)
- Theorem: Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_{1} and z_{2} respectively. If $f: D \rightarrow \mathbb{C}$ is a continuous function with primitive $F: D \rightarrow \mathbb{C}$, then

$$
\int_{\gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Proof. Let $\gamma:[a, b] \rightarrow \mathbb{C}$. Since $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$ therefore

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)
- Theorem: Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_{1} and z_{2} respectively. If $f: D \rightarrow \mathbb{C}$ is a continuous function with primitive $F: D \rightarrow \mathbb{C}$, then

$$
\int_{\gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Proof. Let $\gamma:[a, b] \rightarrow \mathbb{C}$. Since $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$ therefore
$\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t$

$$
=F(\gamma(b))-F(\gamma(a))=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)
- Theorem: Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_{1} and z_{2} respectively. If $f: D \rightarrow \mathbb{C}$ is a continuous function with primitive $F: D \rightarrow \mathbb{C}$, then

$$
\int_{\gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Proof. Let $\gamma:[a, b] \rightarrow \mathbb{C}$. Since $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$ therefore $\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t$

$$
=F(\gamma(b))-F(\gamma(a))=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

- Corollary: In particular, if γ is a closed contour then $\int_{\gamma} f(z) d z=0$.

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(3) $\int_{-i}^{i} \frac{1}{z} d z=\log (i)-\log (-i)=\frac{i \pi}{2}-\frac{-i \pi}{2}=i \pi$.
above function on any contour joining nonzero complex numbers z_{1}, z_{2} not passing through origin is given by

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(3) $\int_{-i}^{i} \frac{1}{z} d z=\log (i)-\log (-i)=\frac{i \pi}{2}-\frac{-i \pi}{2}=i \pi$.
(4) The function $\frac{1}{z^{n}}, n>1$ is continuous on \mathbb{C}^{*}. Thus the integral of the above function on any contour joining nonzero complex numbers z_{1}, z_{2} not passing through origin is given by

$$
\int_{z_{1}}^{z_{2}} \frac{d z}{z^{n}}=-(n-1)\left(\frac{1}{z_{2}^{n-1}}-\frac{1}{z_{1}^{n-1}}\right)
$$

In particular we have $\int_{C} \frac{d z}{z^{n}}=0$ where C any closed curve not possing

Antiderivatives

When such F exists we write

$$
\int_{\gamma} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(3) $\int_{-i}^{i} \frac{1}{z} d z=\log (i)-\log (-i)=\frac{i \pi}{2}-\frac{-i \pi}{2}=i \pi$.
(4) The function $\frac{1}{z^{n}}, n>1$ is continuous on \mathbb{C}^{*}. Thus the integral of the above function on any contour joining nonzero complex numbers z_{1}, z_{2} not passing through origin is given by

$$
\int_{z_{1}}^{z_{2}} \frac{d z}{z^{n}}=-(n-1)\left(\frac{1}{z_{2}^{n-1}}-\frac{1}{z_{1}^{n-1}}\right) .
$$

In particular we have $\int_{C} \frac{d z}{z^{n}}=0$ where C any closed curve not possing through origin.

Complex integration

- So far, we get an answer to the following question:
- Question: When a line integral of f does not depend on path?
- We proved that "a line integral of f does not depend on a path if f has primitive.

Complex integration

- So far, we get an answer to the following question:
- Question: When a line integral of f does not depend on path?
- We proved that "a line integral of f does not depend on a path if f has primitive.
- Now, we will come by an answer to the following question:
- Question: Under what conditions on f we can guarantee the existence of g such that $g^{\prime}=f$?

Simply Connected

- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.

- Examples:
- The whole complex plane \mathbb{C}
- Any open disc
- The right half plane $R H P=\{z: \operatorname{Re} z>0\}$

Simply Connected

- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- Examples:
- The whole complex plane \mathbb{C}
- Any open disc
- The right half plane RHP $=$
- A domain D is called multiply connected if it is not simply connected

Simply Connected

- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- Examples:
- The whole complex plane \mathbb{C}
- Any open disc
- The right half plane $R H P=\{z: \operatorname{Re} z>0\}$.
- A domain D is called multiply connected if it is not simply connected.
- Examples:
- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- Examples:
- The whole complex plane \mathbb{C}
- Any open disc
- The right half plane $R H P=\{z: \operatorname{Re} z>0\}$.
- A domain D is called multiply connected if it is not simply connected.
- Examples:
- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- Examples:
- The whole complex plane \mathbb{C}
- Any open disc
- The right half plane $R H P=\{z: \operatorname{Re} z>0\}$.
- A domain D is called multiply connected if it is not simply connected.
- Examples:
- The sets $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$
- $B(o, r) \backslash\{0\}$,
- The annulus $A(a, b)=\{z \in \mathbb{C}: a<|z|<b\}$.

Cauchy's Theorem

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then

$$
\int_{C} f(z) d z=0 .
$$

To prove the above theorem we need the following Green's Theorem.

Cauchy's Theorem

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then

$$
\int_{C} f(z) d z=0
$$

To prove the above theorem we need the following Green's Theorem.
Green's Theorem Let C be a positively orientated simple closed curve. Let R be the domain that forms the interior of C. If u and v are continuous and have continuous partial derivatives u_{x}, u_{y}, v_{x} and v_{y} at all points on C then

$$
\int_{C} u d x+v d y=\iint_{R}\left[v_{x}-u_{y}\right] d x d y
$$

Cauchy's Theorem

Proof. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ and $C(t)=x(t)+i y(t)$, $a \leq t \leq b$ is the curve C. Then

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(C(t)) C^{\prime}(t) d t \\
& =\int_{a}^{b}[u(x(t), y(t))+i v(x(t), y(t))]\left[x^{\prime}(t)+i y^{\prime}(t)\right] d t \\
& =\int_{a}^{b}\left(u x^{\prime}-v y^{\prime}\right) d t+i \int_{a}^{b}\left(v x^{\prime}+u y^{\prime}\right) d t \\
& =\int_{C} u d x-v d y+i \int_{C} v d x+u d y \\
& =\iint_{R}\left(-v_{x}-u_{y}\right) d x d y+i \iint_{R}\left(u_{x}-v_{y}\right) d x d y, \\
& =0 \quad \text { (by Green's theorem) } \\
& \text { (by CR equations } \left.u_{x}=v_{y} \text { and } u_{y}=-v_{x}\right) .
\end{aligned}
$$

Cauchy's Theorem

Let $C(t)=e^{i t},-\pi \leq t \leq \pi$, denotes the unit circle.

Cauchy's Theorem

Let $C(t)=e^{i t},-\pi \leq t \leq \pi$, denotes the unit circle.
(1) It follows from Cauchy's theorem that $\int_{C} f(z) d z=0$, if $f(z)=e^{z^{n}}$, $\cos z$, or $\sin z$.

Cauchy's Theorem

Let $C(t)=e^{i t},-\pi \leq t \leq \pi$, denotes the unit circle.
(1) It follows from Cauchy's theorem that $\int_{C} f(z) d z=0$, if $f(z)=e^{z^{n}}$, $\cos z$, or $\sin z$.
(2) $\int_{C} f(z) d z=0$ if $f(z)=\frac{1}{z^{2}}$, or $\operatorname{cosec}^{2} z$ from the fundamental theorem as $\frac{d}{d z}\left(-\frac{1}{z}\right)=\frac{1}{z^{2}}$ and $\frac{d}{d z}(-\cot z)=\operatorname{cosec}^{2} z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
(3) $\int_{C} \frac{e^{i z^{2}}}{z^{2}+4} d z=0$ by Cauchy's theorem. Note that the integrand is not
analytic at $z= \pm 2$ but that does not bother us as these points are not
enclosed by C.
(1) If $f(z)=(\operatorname{lm} z)^{2}$ then $\int f(z) d z=0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Cauchy's Theorem

Let $C(t)=e^{i t},-\pi \leq t \leq \pi$, denotes the unit circle.
(1) It follows from Cauchy's theorem that $\int_{C} f(z) d z=0$, if $f(z)=e^{z^{n}}$, $\cos z$, or $\sin z$.
(2) $\int_{C} f(z) d z=0$ if $f(z)=\frac{1}{z^{2}}$, or $\operatorname{cosec}^{2} z$ from the fundamental theorem as $\frac{d}{d z}\left(-\frac{1}{z}\right)=\frac{1}{z^{2}}$ and $\frac{d}{d z}(-\cot z)=\operatorname{cosec}^{2} z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
(3) $\int_{C} \frac{e^{i z^{2}}}{z^{2}+4} d z=0$ by Cauchy's theorem. Note that the integrand is not analytic at $z= \pm 2$ but that does not bother us as these points are not enclosed by C.
(1) If $f(z)=(\operatorname{lm} z)^{2}$ then $f(z) d z=0$ (check this). As f is not analytic
anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Cauchy's Theorem

Let $C(t)=e^{i t},-\pi \leq t \leq \pi$, denotes the unit circle.
(1) It follows from Cauchy's theorem that $\int_{C} f(z) d z=0$, if $f(z)=e^{z^{n}}$, $\cos z$, or $\sin z$.
(2) $\int_{C} f(z) d z=0$ if $f(z)=\frac{1}{z^{2}}$, or $\operatorname{cosec}^{2} z$ from the fundamental theorem as $\frac{d}{d z}\left(-\frac{1}{z}\right)=\frac{1}{z^{2}}$ and $\frac{d}{d z}(-\cot z)=\operatorname{cosec}^{2} z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
(3) $\int_{C} \frac{e^{i z^{2}}}{z^{2}+4} d z=0$ by Cauchy's theorem. Note that the integrand is not analytic at $z= \pm 2$ but that does not bother us as these points are not enclosed by C.
(4) If $f(z)=(\operatorname{lm} z)^{2}$ then $\int_{C} f(z) d z=0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Consequences of Cauchy's Theorem

- Independence of path: Let D be a simply connected domain and $f: D \rightarrow \mathbb{C}$ analytic. Let z_{1}, z_{2} be two points in D. If γ_{1} and γ_{2} be two simple contour joining z_{1} and z_{2} such that the curves lie entirely in D then,

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

- Proof: If we define

then γ is a simple closed curve and

By Cauchy's theorem

From last two equations we get

Consequences of Cauchy's Theorem

- Independence of path: Let D be a simply connected domain and $f: D \rightarrow \mathbb{C}$ analytic. Let z_{1}, z_{2} be two points in D. If γ_{1} and γ_{2} be two simple contour joining z_{1} and z_{2} such that the curves lie entirely in D then,

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

- Proof: If we define

$$
\gamma(t)= \begin{cases}\gamma_{1}(2 t) & \text { if } 0 \leq t \leq 1 / 2 \\ \eta(t)=\gamma_{2}(2(1-t)) & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

then γ is a simple closed curve and

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\eta} f(z) d z
$$

By Cauchy's theorem

$$
\int_{\gamma} f(z) d z=0
$$

From last two equations we get

$$
\int_{\gamma_{1}} f(z) d z=-\int_{\eta} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

Consequences of Cauchy's Theorem

- Following theorem is a answer to the question Under what conditions on f we can guarantee the existence of g such that $g^{\prime}=f$?
- Theorem: If f is an analytic function on a simply connected domain D then there exists a function g, which is analytic on D such that $g^{\prime}=f$.

Consequences of Cauchy's Theorem

- Following theorem is a answer to the question Under what conditions on f we can guarantee the existence of g such that $g^{\prime}=f$?
- Theorem: If f is an analytic function on a simply connected domain D then there exists a function g, which is analytic on D such that $g^{\prime}=f$.
- Proof. Fix a point $z_{0} \in D$ and define

$$
g(z)=\int_{z_{0}}^{z} f(w) d w
$$

- The integral is considered as a contour integral over any curve lying in D and joining z with z_{0}.
- By the result the integral does not depend on the curve we choose and hence the function g is well defined.
- We will show that $g^{\prime}=f$.

Consequences of Cauchy's Theorem

- If $z+h \in D$ then

$$
g(z+h)-g(z)=\int_{z_{0}}^{z+h} f(w) d w-\int_{z_{0}}^{z} f(w) d w=\int_{z}^{z+h} f(w) d w
$$

where the curve joining z and $z+h$ can be considered as a straight line $I(t)=z+t h, t \in[0,1]$. Since $\int_{l} f(z) d w=f(z) h$ therefore we get

$$
\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h} \int_{z}^{z+h}(f(w)-f(z)) d w\right| .
$$

Consequences of Cauchy's Theorem

- If $z+h \in D$ then

$$
g(z+h)-g(z)=\int_{z_{0}}^{z+h} f(w) d w-\int_{z_{0}}^{z} f(w) d w=\int_{z}^{z+h} f(w) d w,
$$

where the curve joining z and $z+h$ can be considered as a straight line $I(t)=z+t h, t \in[0,1]$. Since $\int_{I} f(z) d w=f(z) h$ therefore we get

$$
\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h} \int_{z}^{z+h}(f(w)-f(z)) d w\right| .
$$

- Now f is continuous at z, then for any given $\epsilon>0$ there exist a $\delta>0$ such that $|f(z+h)-f(z)|<\epsilon$ if $|h|<\delta$.

Consequences of Cauchy's Theorem

- If $z+h \in D$ then

$$
g(z+h)-g(z)=\int_{z_{0}}^{z+h} f(w) d w-\int_{z_{0}}^{z} f(w) d w=\int_{z}^{z+h} f(w) d w
$$

where the curve joining z and $z+h$ can be considered as a straight line $I(t)=z+t h, t \in[0,1]$. Since $\int_{l} f(z) d w=f(z) h$ therefore we get

$$
\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h} \int_{z}^{z+h}(f(w)-f(z)) d w\right| .
$$

- Now f is continuous at z, then for any given $\epsilon>0$ there exist a $\delta>0$ such that $|f(z+h)-f(z)|<\epsilon$ if $|h|<\delta$.
- Thus for $|h|<\delta$ we get from ML-inequality that

$$
\left|\frac{1}{h} \int_{z}^{z+h}(f(w)-f(z)) d w\right| \leq \frac{\epsilon|h|}{|h|}=\epsilon
$$

- This show that $g^{\prime}(z)=\lim _{h \rightarrow 0} \frac{g(z+h)-g(z)}{h}=f(z)$.

