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Lecture 8 Complex Integration



Recall

Definition: Let γ : [a, b]→ C, be a contour and S ⊂ C such that γ ⊂ S . If
f : S → C is a continuous function then the the contour integral (or line
integral) of f along the curve γ is defined by∫

γ

f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt.

Example: Let f (z) = z̄ .

If γ1(t) = e it , t ∈ [0, π] then,
∫
γ1

f (z)dz = iπ.

If γ2(t) = 1(1− t) + t.(−1) = 1− 2t, t ∈ [0, 1] then,
∫
γ2

f (z)dz = 0.

In the above example γ1 and γ2 are two paths joining 1 and −1. But the
line integral along the paths γ1 and γ2 are NOT same.

Question: When a line integral of f does not depend on path?
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Complex integration

(The fundamental integral) For a ∈ C, r > 0 and n ∈ Z∫
γ

(z − a)ndz =

{
0 if n 6= −1

2πi if n = −1

where γ(t) = a + re it for t ∈ [0, 2π] is the circle of radius r centered at a.

Let f , g be piecewise continuous complex valued functions then∫
γ

[αf ± g ](z)dz = α

∫
γ

f (z)dz ±
∫
γ

g(z)dz .

Let γ : [a, b]→ C be a curve and a < c < b. If γ1 = γ|[a,c] and

γ2 = γ|[c,b] then

∫
γ

f (z)dz =

∫
γ1

f (z)dz +

∫
γ2

f (z)dz .∫
−γ

f (z)dz = −
∫
γ

f (z)dz .
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Complex integration

Let f be a piecewise continuous function defined on a set containing a
cotour γ. If |f (z)| ≤ M for all z ∈ γ and L =length of γ then∣∣∣∣∫

γ

f (z)dz

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

f (γ(t)γ′(t)|dt
∣∣∣∣

≤
∫ b

a

|f (γ(t)||γ′(t)|dt

≤ M

∫ b

a

|γ′(t)|dt = ML. (ML-inequality)

Let γ(t) = 2e it , t ∈ [0, π
2

] and f (z) =
z + 4

z3 − 1
. Then by ML-ineuqality∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ 6π

7
.
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F ′(z) = f (z) for all z ∈ D.

The primitive of a function is unique up to an additive constant.

The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)

Theorem: Let D be a domain in C and γ be a contour in D with initial
and end points z1 and z2 respectively. If f : D → C is a continuous
function with primitive F : D → C, then∫

γ

f (z)dz = F (z2)− F (z1).

Proof. Let γ : [a, b]→ C. Since
d

dt
F (γ(t)) = F ′(γ(t))γ′(t) therefore∫

γ

f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt =

∫ b

a

d

dt
F (γ(t))dt

= F (γ(b))− F (γ(a)) = F (z2)− F (z1).

Corollary: In particular, if γ is a closed contour then
∫
γ
f (z)dz = 0.
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Antiderivatives

When such F exists we write∫
γ

f (z)dz =

∫ z2

z1

f (z)dz =

∫ z2

z1

F ′(z)dz = F (z2)− F (z1).

1

∫ z2

z1

z2dz =
z32 − z31

3
.

2

∫ iπ

−iπ

cos zdz = sin(iπ)− sin(−iπ) = 2 sin(iπ).

3

∫ i

−i

1

z
dz = Log (i)− Log (−i) =

iπ

2
− −iπ

2
= iπ.

4 The function 1
zn
, n > 1 is continuous on C∗. Thus the integral of the

above function on any contour joining nonzero complex numbers z1, z2
not passing through origin is given by∫ z2

z1

dz

zn
= −(n − 1)

(
1

zn−1
2

− 1

zn−1
1

)
.

In particular we have

∫
C

dz

zn
= 0 where C any closed curve not possing

through origin.
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z1

dz

zn
= −(n − 1)

(
1

zn−1
2

− 1

zn−1
1

)
.

In particular we have

∫
C

dz

zn
= 0 where C any closed curve not possing

through origin.
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Complex integration

So far, we get an answer to the following question:

Question: When a line integral of f does not depend on path?

We proved that ”a line integral of f does not depend on a path if f has
primitive.

Now, we will come by an answer to the following question:

Question: Under what conditions on f we can guarantee the existence of
g such that g ′ = f ?
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Simply Connected

Definition: A domain D is called simply connected if every simple
closed contour (within it) encloses points of D only.

Examples:

The whole complex plane C
Any open disc
The right half plane RHP = {z : Re z > 0}.

A domain D is called multiply connected if it is not simply connected.

Examples:

The sets C∗ = C \ {0}
B(o, r) \ {0},
The annulus A(a, b) = {z ∈ C : a < |z | < b}.
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Cauchy’s Theorem

Theorem: (Cauchy’s Theorem) If a function f is analytic on a simply
connected domain D and C is a simple closed contour lying in D then∫

C

f (z)dz = 0.

To prove the above theorem we need the following Green’s Theorem.

Green’s Theorem Let C be a positively orientated simple closed curve.
Let R be the domain that forms the interior of C. If u and v are

continuous and have continuous partial derivatives ux , uy , vx and vy at
all points on C then∫

C

udx + vdy =

∫ ∫
R

[vx − uy ]dxdy .
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Cauchy’s Theorem

Proof. Let f (z) = f (x + iy) = u(x , y) + iv(x , y) and C(t) = x(t) + iy(t),
a ≤ t ≤ b is the curve C . Then∫

C

f (z)dz =

∫ b

a

f (C(t))C ′(t)dt

=

∫ b

a

[u(x(t), y(t)) + iv(x(t), y(t))][x ′(t) + iy ′(t)]dt

=

∫ b

a

(ux ′ − vy ′)dt + i

∫ b

a

(vx ′ + uy ′)dt

=

∫
C

udx − vdy + i

∫
C

vdx + udy

=

∫ ∫
R

(−vx − uy )dxdy + i

∫ ∫
R

(ux − vy )dxdy ,

(by Green’s theorem)

= 0 (by CR equations ux = vy and uy = −vx).
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Cauchy’s Theorem

Let C(t) = e it , −π ≤ t ≤ π, denotes the unit circle.

1 It follows from Cauchy’s theorem that
∫
C
f (z)dz = 0, if f (z) = ez

n

,
cos z , or sin z .

2

∫
C

f (z)dz = 0 if f (z) = 1
z2
, or cosec2z from the fundamental theorem as

d
dz

(− 1
z

) = 1
z2

and d
dz

(− cot z) = cosec2z . Note that here Cauchy’s
theorem cannot be applied as the integrands are not analytic at zero.

3

∫
C

e iz
2

z2 + 4
dz = 0 by Cauchy’s theorem. Note that the integrand is not

analytic at z = ±2 but that does not bother us as these points are not
enclosed by C .

4 If f (z) = (Im z)2 then

∫
C

f (z)dz = 0 (check this). As f is not analytic

anywhere in C Cauchy’s theorem can not be applied to prove this.
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Consequences of Cauchy’s Theorem

Independence of path: Let D be a simply connected domain and
f : D → C analytic. Let z1, z2 be two points in D. If γ1 and γ2 be two
simple contour joining z1 and z2 such that the curves lie entirely in D
then, ∫

γ1

f (z)dz =

∫
γ2

f (z)dz .

Proof: If we define

γ(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2

η(t) = γ2(2(1− t)) if 1/2 ≤ t ≤ 1

then γ is a simple closed curve and∫
γ

f (z)dz =

∫
γ1

f (z)dz +

∫
η

f (z)dz .

By Cauchy’s theorem ∫
γ

f (z)dz = 0.

From last two equations we get∫
γ1

f (z)dz = −
∫
η

f (z)dz =

∫
γ2

f (z)dz .
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Consequences of Cauchy’s Theorem

Following theorem is a answer to the question Under what conditions on
f we can guarantee the existence of g such that g ′ = f ?

Theorem: If f is an analytic function on a simply connected domain D

then there exists a function g , which is analytic on D such that g ′ = f .

Proof. Fix a point z0 ∈ D and define

g(z) =

∫ z

z0

f (w)dw .

The integral is considered as a contour integral over any curve
lying in D and joining z with z0.
By the result the integral does not depend on the curve we
choose and hence the function g is well defined.
We will show that g ′ = f .
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Consequences of Cauchy’s Theorem

If z + h ∈ D then

g(z + h)− g(z) =

∫ z+h

z0

f (w)dw −
∫ z

z0

f (w)dw =

∫ z+h

z

f (w)dw ,

where the curve joining z and z + h can be considered as a straight line
l(t) = z + th, t ∈ [0, 1]. Since

∫
l
f (z)dw = f (z)h therefore we get∣∣∣∣g(z + h)− g(z)

h
− f (z)

∣∣∣∣ =

∣∣∣∣1h
∫ z+h

z

(f (w)− f (z))dw

∣∣∣∣ .
Now f is continuous at z , then for any given ε > 0 there exist a δ > 0
such that |f (z + h)− f (z)| < ε if |h| < δ.

Thus for |h| < δ we get from ML-inequality that∣∣∣∣1h
∫ z+h

z

(f (w)− f (z))dw

∣∣∣∣ ≤ ε|h|
|h| = ε.

This show that g ′(z) = lim
h→0

g(z+h)−g(z)
h

= f (z).
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