

æ

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

- If $\gamma_1(t) = e^{it}$, $t \in [0, \pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.
- If $\gamma_2(t) = 1(1-t) + t.(-1) = 1 2t$, $t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0$.
- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

• If $\gamma_1(t) = e^{it}$, $t \in [0,\pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.

• If $\gamma_2(t) = 1(1-t) + t.(-1) = 1 - 2t$, $t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0$.

- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

▲ □ ▶ ▲ □ ▶ ▲

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

- If $\gamma_1(t) = e^{it}$, $t \in [0, \pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.
- If $\gamma_2(t) = 1(1-t) + t.(-1) = 1 2t, \ t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0.$
- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

- If $\gamma_1(t) = e^{it}$, $t \in [0, \pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.
- If $\gamma_2(t) = 1(1-t) + t.(-1) = 1 2t, \ t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0.$
- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

- If $\gamma_1(t) = e^{it}$, $t \in [0,\pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.
- If $\gamma_2(t) = 1(1-t) + t \cdot (-1) = 1 2t$, $t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0$.
- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Example: Let $f(z) = \overline{z}$.

- If $\gamma_1(t) = e^{it}$, $t \in [0,\pi]$ then, $\int_{\gamma_1} f(z) dz = i\pi$.
- If $\gamma_2(t) = 1(1-t) + t \cdot (-1) = 1 2t$, $t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0$.
- In the above example γ₁ and γ₂ are two paths joining 1 and −1. But the line integral along the paths γ₁ and γ₂ are NOT same.
- Question: When a line integral of f does not depend on path?

・ 同 ト ・ ヨ ト ・ ヨ ト

• (The fundamental integral) For $a \in \mathbb{C}, r > 0$ and $n \in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{if } n = -1 \end{cases}$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$ is the circle of radius r centered at a.

• Let f, g be piecewise continuous complex valued functions then $\int_{\gamma} [\alpha f \pm g](z) dz = \alpha \int_{\gamma} f(z) dz \pm \int_{\gamma} g(z) dz.$

• Let
$$\gamma : [a, b] \to \mathbb{C}$$
 be a curve and $a < c < b$. If $\gamma_1 = \gamma|_{[a,c]}$ and
 $\gamma_2 = \gamma|_{[c,b]}$ then $\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$.
• $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$.

□ > < = > <

• (The fundamental integral) For $a \in \mathbb{C}, r > 0$ and $n \in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{if } n = -1 \end{cases}$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$ is the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then $\int_{\gamma} [\alpha f \pm g](z) dz = \alpha \int_{\gamma} f(z) dz \pm \int_{\gamma} g(z) dz.$
- Let γ : [a, b] → C be a curve and a < c < b. If γ₁ = γ|_[a,c] and γ₂ = γ|_[c,b] then ∫_γ f(z)dz = ∫_{γ1} f(z)dz + ∫_{γ2} f(z)dz.
 ∫_{-γ} f(z)dz = -∫_γ f(z)dz.

• (The fundamental integral) For $a \in \mathbb{C}, r > 0$ and $n \in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{if } n = -1 \end{cases}$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$ is the circle of radius r centered at a.

• Let f, g be piecewise continuous complex valued functions then $\int_{\gamma} [\alpha f \pm g](z) dz = \alpha \int_{\gamma} f(z) dz \pm \int_{\gamma} g(z) dz.$

• Let
$$\gamma : [a, b] \to \mathbb{C}$$
 be a curve and $a < c < b$. If $\gamma_1 = \gamma|_{[a,c]}$ and
 $\gamma_2 = \gamma|_{[c,b]}$ then $\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$.
• $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$.

• (The fundamental integral) For $a \in \mathbb{C}, r > 0$ and $n \in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{if } n = -1 \end{cases}$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$ is the circle of radius r centered at a.

• Let f, g be piecewise continuous complex valued functions then $\int_{\gamma} [\alpha f \pm g](z) dz = \alpha \int_{\gamma} f(z) dz \pm \int_{\gamma} g(z) dz.$

• Let
$$\gamma : [a, b] \to \mathbb{C}$$
 be a curve and $a < c < b$. If $\gamma_1 = \gamma|_{[a,c]}$ and
 $\gamma_2 = \gamma|_{[c,b]}$ then $\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$.
• $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$.

Let f be a piecewise continuous function defined on a set containing a cotour γ. If |f(z)| ≤ M for all z ∈ γ and L =length of γ then

$$\begin{split} \left| \int_{\gamma} f(z) dz \right| &\leq \left| \int_{a}^{b} f(\gamma(t)\gamma'(t)) dt \right| \\ &\leq \int_{a}^{b} |f(\gamma(t))|\gamma'(t)| dt \\ &\leq M \int_{a}^{b} |\gamma'(t)| dt = ML. \quad (\text{ML-inequality}) \end{split}$$

• Let $\gamma(t) = 2e^{it}, t \in [0, \frac{\pi}{2}]$ and $f(z) = \frac{z+4}{z^3-1}$. Then by ML-ineuqality $\left| \int_{\gamma} f(z) \, dz \right| \leq \frac{6\pi}{7}.$

/⊒ ▶ < ∃ ▶ <

Let f be a piecewise continuous function defined on a set containing a cotour γ. If |f(z)| ≤ M for all z ∈ γ and L =length of γ then

$$\begin{split} \left| \int_{\gamma} f(z) dz \right| &\leq \left| \int_{a}^{b} f(\gamma(t)\gamma'(t)) dt \right| \\ &\leq \int_{a}^{b} |f(\gamma(t))| \gamma'(t)| dt \\ &\leq M \int_{a}^{b} |\gamma'(t)| dt = ML. \quad (\text{ML-inequality}) \end{split}$$

• Let $\gamma(t) = 2e^{it}, t \in [0, \frac{\pi}{2}]$ and $f(z) = \frac{z+4}{z^3-1}$. Then by ML-ineuqality $\left|\int_{\gamma} f(z) \, dz\right| \leq \frac{6\pi}{7}.$

同 ト イ ヨ ト イ ヨ ト

Let f be a piecewise continuous function defined on a set containing a cotour γ. If |f(z)| ≤ M for all z ∈ γ and L =length of γ then

$$\begin{split} \left| \int_{\gamma} f(z) dz \right| &\leq \left| \int_{a}^{b} f(\gamma(t) \gamma'(t)) dt \right| \\ &\leq \int_{a}^{b} |f(\gamma(t))| \gamma'(t)| dt \\ &\leq M \int_{a}^{b} |\gamma'(t)| dt = ML. \quad (\text{ML-inequality}) \end{split}$$

• Let
$$\gamma(t) = 2e^{it}, t \in [0, \frac{\pi}{2}]$$
 and $f(z) = \frac{z+4}{z^3-1}$. Then by ML-ineuqality
$$\left| \int_{\gamma} f(z) \, dz \right| \leq \frac{6\pi}{7}.$$

- **→** → **→**

Definition: The **antiderivative or primitive** of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question**: When a line integral of *f* does not depend on path?)
- Theorem: Let D be a domain in C and γ be a contour in D with initial and end points z₁ and z₂ respectively. If f : D → C is a continuous function with primitive F : D → C, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

• **Corollary:** In particular, if γ is a closed contour then $\int_{\infty} f(z) dz = 0$.

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question**: When a line integral of *f* does not depend on path?)
- **Theorem:** Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_1 and z_2 respectively. If $f : D \to \mathbb{C}$ is a continuous function with primitive $F : D \to \mathbb{C}$, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a,b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question**: When a line integral of *f* does not depend on path?)
- **Theorem:** Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_1 and z_2 respectively. If $f : D \to \mathbb{C}$ is a continuous function with primitive $F : D \to \mathbb{C}$, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question**: When a line integral of *f* does not depend on path?)
- **Theorem:** Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_1 and z_2 respectively. If $f : D \to \mathbb{C}$ is a continuous function with primitive $F : D \to \mathbb{C}$, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question:** When a line integral of *f* does not depend on path?)
- Theorem: Let D be a domain in C and γ be a contour in D with initial and end points z₁ and z₂ respectively. If f : D → C is a continuous function with primitive F : D → C, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question:** When a line integral of *f* does not depend on path?)
- Theorem: Let D be a domain in C and γ be a contour in D with initial and end points z₁ and z₂ respectively. If f : D → C is a continuous function with primitive F : D → C, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question:** When a line integral of *f* does not depend on path?)
- Theorem: Let D be a domain in C and γ be a contour in D with initial and end points z₁ and z₂ respectively. If f : D → C is a continuous function with primitive F : D → C, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is **unique** up to an additive constant.
- The following theorem is an answer to the **Question:** When a line integral of *f* does not depend on path?)
- **Theorem:** Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_1 and z_2 respectively. If $f : D \to \mathbb{C}$ is a continuous function with primitive $F : D \to \mathbb{C}$, then

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma : [a, b] \to \mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

When such F exists we write

$$\int_{\gamma} f(z) dz = \int_{z_1}^{z_2} f(z) dz = \int_{z_1}^{z_2} F'(z) dz = F(z_2) - F(z_1).$$

$$\int_{z_1} z^2 dz = \frac{z_2 - z_1}{3}.$$

$$\int_{-i\pi}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

$$\int_{-i\pi}^{i} \frac{1}{2} dz = \log(i) - \log(-i) - \frac{i\pi}{2} - \frac{-i\pi}{2} - i\pi.$$

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1) \left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}} \right).$$

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

$$\int_{z_1}^{z_2} z^2 dz = \frac{z_2^3 - z_1^3}{3}.$$

$$\int_{z_1}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

3)
$$\int_{-i}^{i} \frac{1}{z} dz = \log(i) - \log(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi.$$

The function 1/2ⁿ, n > 1 is continuous on C*. Thus the integral of the above function on any contour joining nonzero complex numbers z₁, z₂ not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1)\left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}}\right).$$

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

$$\int_{z_1}^{z_2} z^2 dz = \frac{z_2^3 - z_1^3}{3}.$$

$$\int_{-i\pi}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

$$\int_{-i}^{i} \frac{1}{z} dz = \log(i) - \log(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi.$$

• The function $\frac{1}{z^n}$, n > 1 is continuous on \mathbb{C}^* . Thus the integral of the above function on any contour joining nonzero complex numbers z_1 , z_2 not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1) \left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}} \right).$$

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

$$\int_{z_1}^{z_2} z^2 dz = \frac{z_2^3 - z_1^3}{3}.$$

$$\int_{-i\pi}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

$$\int_{-i}^{i} \frac{1}{z} dz = \log(i) - \log(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi.$$

• The function $\frac{1}{z^n}$, n > 1 is continuous on \mathbb{C}^* . Thus the integral of the above function on any contour joining nonzero complex numbers z_1 , z_2 not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1) \left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}} \right).$$

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

$$\int_{z_1}^{z_2} z^2 dz = \frac{z_2^3 - z_1^3}{3}.$$

$$\int_{-i\pi}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

$$\int_{-i}^{i} \frac{1}{z} dz = \text{Log }(i) - \text{Log }(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi.$$

The function ¹/_{zⁿ}, n > 1 is continuous on C^{*}. Thus the integral of the above function on any contour joining nonzero complex numbers z₁, z₂ not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1)\left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}}\right)$$

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

$$\int_{z_1}^{z_2} z^2 dz = \frac{z_2^3 - z_1^3}{3}.$$

$$\int_{-i\pi}^{i\pi} \cos z dz = \sin(i\pi) - \sin(-i\pi) = 2\sin(i\pi).$$

$$\int_{-i\pi}^{i} \frac{1}{z} dz = \log(i) - \log(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi.$$

The function ¹/_{zⁿ}, n > 1 is continuous on C^{*}. Thus the integral of the above function on any contour joining nonzero complex numbers z₁, z₂ not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1)\left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}}\right)$$

- So far, we get an answer to the following question:
- Question: When a line integral of f does not depend on path?
- We proved that "a line integral of f does not depend on a path if f has primitive.
- Now, we will come by an answer to the following question:
- Question: Under what conditions on f we can guarantee the existence of g such that g' = f?

- So far, we get an answer to the following question:
- Question: When a line integral of f does not depend on path?
- We proved that "a line integral of f does not depend on a path if f has primitive.
- Now, we will come by an answer to the following question:
- Question: Under what conditions on *f* we can guarantee the existence of *g* such that *g'* = *f*?

- **Definition:** A domain *D* is called **simply connected** if every simple closed contour (within it) encloses points of *D* only.
- Examples:
 - $\bullet\,$ The whole complex plane $\mathbb C$
 - Any open disc
 - The right half plane $RHP = \{z : \text{Re } z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.

• Examples:

- The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
- $B(o,r)\setminus\{0\},\$
- The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}$.

- **→** → **→**

• **Definition:** A domain *D* is called **simply connected** if every simple closed contour (within it) encloses points of *D* only.

- Examples:
 - $\bullet\,$ The whole complex plane $\mathbb C$
 - Any open disc
 - The right half plane $RHP = \{z : \text{Re } z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.

• Examples:

- The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
- $B(o,r)\setminus\{0\},\$
- The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}.$

- **Definition:** A domain *D* is called **simply connected** if every simple closed contour (within it) encloses points of *D* only.
- Examples:
 - $\bullet\,$ The whole complex plane $\mathbb C$
 - Any open disc
 - The right half plane $RHP = \{z : \text{Re } z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.

• Examples:

- The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
- $B(o,r) \setminus \{0\},\$
- The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}$.

- **Definition:** A domain *D* is called **simply connected** if every simple closed contour (within it) encloses points of *D* only.
- Examples:
 - $\bullet\,$ The whole complex plane $\mathbb C$
 - Any open disc
 - The right half plane $RHP = \{z : \text{Re } z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.

• Examples:

- The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
- $B(o,r)\setminus\{0\},\$
- The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}$.

▲ □ ▶ ▲ □ ▶ ▲

- **Definition:** A domain *D* is called **simply connected** if every simple closed contour (within it) encloses points of *D* only.
- Examples:
 - $\bullet\,$ The whole complex plane $\mathbb C$
 - Any open disc
 - The right half plane $RHP = \{z : \text{Re } z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.

• Examples:

- The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
- $B(o,r) \setminus \{0\},\$
- The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}.$

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then

$$\int_C f(z)dz=0.$$

To prove the above theorem we need the following Green's Theorem.

Green's Theorem Let C be a positively orientated simple closed curve. Let R be the domain that forms the interior of C. If u and v are continuous and have continuous partial derivatives u_x , u_y , v_x and v_y at all points on C then

$$\int_C u dx + v dy = \int \int_R [v_x - u_y] dx dy.$$

/⊒ ▶ < ∃ ▶ <

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then

$$\int_C f(z)dz=0.$$

To prove the above theorem we need the following Green's Theorem.

Green's Theorem Let C be a positively orientated simple closed curve. Let R be the domain that forms the interior of C. If u and v are continuous and have continuous partial derivatives u_x, u_y, v_x and v_y at all points on C then

$$\int_C u dx + v dy = \int \int_R [v_x - u_y] dx dy.$$

Proof. Let f(z) = f(x + iy) = u(x, y) + iv(x, y) and C(t) = x(t) + iy(t), $a \le t \le b$ is the curve C. Then

(本部) (本語) (本語)

э

Let $C(t) = e^{it}$, $-\pi \le t \le \pi$, denotes the unit circle.

- It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z''}$, $\cos z$, or $\sin z$.
- ② $\int_{C} f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- (a) $\int_C \frac{e^{iz^2}}{z^2 + 4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by *C*.
- If $f(z) = (\operatorname{Im} z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Let $C(t) = e^{it}$, $-\pi \le t \le \pi$, denotes the unit circle.

- It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- (a) $\int_C f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- (a) $\int_C \frac{e^{iz^2}}{z^2 + 4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by *C*.
- If $f(z) = (\operatorname{Im} z)^2$ then $\int_{C} f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Let $C(t) = e^{it}, \ -\pi \leq t \leq \pi$, denotes the unit circle.

- It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- **3** $\int_{C} f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- (a) $\int_C \frac{e^{iz^2}}{z^2+4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by *C*.
- If $f(z) = (\operatorname{Im} z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

コマ ・ ビ ・ ・

Let $C(t) = e^{it}, \ -\pi \leq t \leq \pi$, denotes the unit circle.

- It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- **2** $\int_{C} f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- **3** $\int_C \frac{e^{iz^2}}{z^2 + 4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by *C*.
- If $f(z) = (\operatorname{Im} z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

直 ト イヨ ト イヨ ト

Let $C(t) = e^{it}, \ -\pi \leq t \leq \pi$, denotes the unit circle.

- It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- **2** $\int_{C} f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- 3 $\int_C \frac{e^{iz^2}}{z^2 + 4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by *C*.
- If $f(z) = (\operatorname{Im} z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

伺 ト く ヨ ト く ヨ ト

• Independence of path: Let D be a simply connected domain and $f: D \to \mathbb{C}$ analytic. Let z_1, z_2 be two points in D. If γ_1 and γ_2 be two simple contour joining z_1 and z_2 such that the curves lie entirely in D then,

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.$$

• Proof: If we define

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{if } 0 \le t \le 1/2\\ \eta(t) = \gamma_2(2(1-t)) & \text{if } 1/2 \le t \le 1 \end{cases}$$

then γ is a simple closed curve and

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\eta} f(z) dz.$$

By Cauchy's theorem

$$\int_{\gamma} f(z) dz = 0.$$

From last two equations we get

$$\int_{\gamma_1} f(z) dz = -\int_{\eta} f(z) dz = \int_{\gamma_2 \Box \to \langle \sigma \rangle} f(z) dz.$$

• Independence of path: Let D be a simply connected domain and $f: D \to \mathbb{C}$ analytic. Let z_1, z_2 be two points in D. If γ_1 and γ_2 be two simple contour joining z_1 and z_2 such that the curves lie entirely in D then,

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.$$

• Proof: If we define

$$\gamma(t) = egin{cases} \gamma_1(2t) & ext{if } 0 \leq t \leq 1/2 \ \eta(t) = \gamma_2(2(1-t)) & ext{if } 1/2 \leq t \leq 1 \end{cases}$$

then γ is a simple closed curve and

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\eta} f(z)dz.$$

By Cauchy's theorem

$$\int_{\gamma} f(z) dz = 0.$$

From last two equations we get

$$\int_{\gamma_1} f(z)dz = -\int_{\eta} f(z)dz = \int_{\gamma_2} f(z)dz.$$

- Following theorem is a answer to the question Under what conditions on f we can guarantee the existence of g such that g' = f?
- **Theorem:** If f is an analytic function on a simply connected domain D then there exists a function g, which is analytic on D such that g' = f.

• **Proof.** Fix a point $z_0 \in D$ and define

$$g(z)=\int_{z_0}^z f(w)dw.$$

- The integral is considered as a contour integral over any curve lying in *D* and joining *z* with *z*₀.
- By the result the integral does not depend on the curve we choose and hence the function *g* is well defined.
- We will show that g' = f.

母▶ ★ 臣▶ ★ 臣

- Following theorem is a answer to the question Under what conditions on f we can guarantee the existence of g such that g' = f?
- **Theorem:** If f is an analytic function on a simply connected domain D then there exists a function g, which is analytic on D such that g' = f.
 - **Proof.** Fix a point $z_0 \in D$ and define

$$g(z)=\int_{z_0}^z f(w)dw.$$

- The integral is considered as a contour integral over any curve lying in *D* and joining *z* with *z*₀.
- By the result the integral does not depend on the curve we choose and hence the function g is well defined.
- We will show that g' = f.

□ > < = > <

• If $z + h \in D$ then

$$g(z+h)-g(z) = \int_{z_0}^{z+h} f(w)dw - \int_{z_0}^{z} f(w)dw = \int_{z}^{z+h} f(w)dw,$$

where the curve joining z and z + h can be considered as a straight line l(t) = z + th, $t \in [0, 1]$. Since $\int_{I} f(z)dw = f(z)h$ therefore we get

$$\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|.$$

- Now f is continuous at z, then for any given ε > 0 there exist a δ > 0 such that |f(z + h) − f(z)| < ε if |h| < δ.
- Thus for $|h| < \delta$ we get from ML-inequality that

$$\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|\leq\frac{\epsilon|h|}{|h|}=\epsilon.$$

• This show that $g'(z) = \lim_{h \to 0} \frac{g(z+h) - g(z)}{h} = f(z).$

• If $z + h \in D$ then

$$g(z+h)-g(z) = \int_{z_0}^{z+h} f(w)dw - \int_{z_0}^{z} f(w)dw = \int_{z}^{z+h} f(w)dw,$$

where the curve joining z and z + h can be considered as a straight line l(t) = z + th, $t \in [0, 1]$. Since $\int_{I} f(z)dw = f(z)h$ therefore we get

$$\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|.$$

Now f is continuous at z, then for any given ε > 0 there exist a δ > 0 such that |f(z + h) − f(z)| < ε if |h| < δ.

• Thus for $|h| < \delta$ we get from ML-inequality that

$$\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|\leq\frac{\epsilon|h|}{|h|}=\epsilon.$$

• This show that $g'(z) = \lim_{h \to 0} \frac{g(z+h) - g(z)}{h} = f(z).$

• If $z + h \in D$ then

$$g(z+h)-g(z) = \int_{z_0}^{z+h} f(w)dw - \int_{z_0}^{z} f(w)dw = \int_{z}^{z+h} f(w)dw,$$

where the curve joining z and z + h can be considered as a straight line l(t) = z + th, $t \in [0, 1]$. Since $\int_{I} f(z)dw = f(z)h$ therefore we get

$$\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|.$$

- Now f is continuous at z, then for any given ε > 0 there exist a δ > 0 such that |f(z + h) − f(z)| < ε if |h| < δ.
- Thus for $|h| < \delta$ we get from ML-inequality that

$$\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|\leq\frac{\epsilon|h|}{|h|}=\epsilon.$$

• This show that $g'(z) = \lim_{h \to 0} \frac{g(z+h)-g(z)}{h} = f(z).$