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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o
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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o

Example: Let f(z) = z.
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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o

Example: Let f(z) = z.
@ If yi(t) = ", t € [0, ] then, f% f(z)dz = iw.
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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o

Example: Let f(z) = z.
@ If yi(t) = ", t € [0, ] then, f% f(z)dz = iw.
@ If y2(t)=1(1—t)+ t.(-1) =1—2¢t, t €]0,1] then, f,yz f(z)dz = 0.
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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o

Example: Let f(z) = z.
@ If yi(t) = ", t € [0, ] then, f% f(z)dz = iw.
@ If y2(t)=1(1—t)+ t.(-1) =1—2¢t, t €]0,1] then, f,yz f(z)dz = 0.

@ In the above example ;1 and 7, are two paths joining 1 and —1. But the
line integral along the paths 71 and 2 are NOT same.
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Recall

Definition: Let «y : [a, b] — C, be a contour and S C C such that vy C S. If
f:S — Cis a continuous function then the the contour integral (or line
integral) of f along the curve 7 is defined by

b
[ f@dz= [ e o

Example: Let f(z) = z.
@ If yi(t) = ", t € [0, ] then, f% f(z)dz = iw.
@ If y2(t)=1(1—t)+ t.(-1) =1—2¢t, t €]0,1] then, f,yz f(z)dz = 0.

@ In the above example ;1 and 7, are two paths joining 1 and —1. But the
line integral along the paths 71 and 2 are NOT same.

@ Question: When a line integral of f does not depend on path?

Lecture 8 Complex Integration



Complex integration

@ (The fundamental integral) Fora€ C, r >0and n€ Z

if -1
[e-ayaz=17 o
~ 27 if n=-1

where y(t) = a+ re” for t € [0,2n] is the circle of radius r centered at a.
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Complex integration

@ (The fundamental integral) Fora€ C, r >0and n€ Z

if -1
[e-ayaz=17 o
~ 27 if n=-1

where y(t) = a+ re” for t € [0,2n] is the circle of radius r centered at a.
@ Let f, g be piecewise continuous complex valued functions then
/[af:tg](z)dz = a/ f(z)dz:l:/g(z)dz.
-

v v
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Complex integration

@ (The fundamental integral) Fora€ C, r >0and n€ Z

0 if -1
/(z —a)'dz = . l n#
5 2mi if n=-1
where y(t) = a+ re” for t € [0,2n] is the circle of radius r centered at a.

@ Let f, g be piecewise continuous complex valued functions then
/[af:tg](z)dz = a/ f(z)dz:l:/g(z)dz.
-

Y Y
@ Let y:[a,b] - C beacurve and a < ¢ < b. If v1 = 7|5, and

72 = Ve then/f(z)dz:/ f(z)dz+/ f(z)dz.

v 7 72

Lecture 8 Complex Integration



Complex integration

@ (The fundamental integral) Fora€ C, r >0and n€ Z

0 if -1
/(z —a)'dz = . l n#
5 2mi if n=-1
where y(t) = a+ re” for t € [0,2n] is the circle of radius r centered at a.

@ Let f, g be piecewise continuous complex valued functions then
/[af:tg](z)dz = a/ f(z)dz:l:/g(z)dz.
-

ol Y
@ Let y:[a,b] - C beacurve and a < ¢ < b. If v1 = 7|5, and

72 = Ve then/f(z)dz:/ f(z)dz+/ f(z)dz.

v 7 72

° /_7 F(z)dz = —/yf(z)dz.
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Complex integration
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Complex integration

@ Let f be a piecewise continuous function defined on a set containing a
cotour 7. If |[f(z)| < M for all z € v and L =length of -y then

b
[ e < /fw(tmt)wr\
b
< / (A (0)] 17 (8) e
< M/b|'y'(t)\dt:l\/IL. (ML-inequality)
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Complex integration

@ Let f be a piecewise continuous function defined on a set containing a
cotour 7. If |[f(z)| < M for all z € v and L =length of -y then

b
[ e < /fw(tmt)wr\
b
< / (A (0)] 17 (8) e
< M/b|'y'(t)\dt:l\/IL. (ML-inequality)

@ Let y(t) =2€",t€[0,%] and f(z) = 23+ 41 Then by ML-ineuqgality
73 _
/f(z) dz| < 61
; 7
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Antiderivatives
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.

@ The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.

@ The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)

@ Theorem: Let D be a domain in C and y be a contour in D with initial
and end points z; and z respectively. If f : D — C is a continuous
function with primitive F : D — C, then

/ f(z)dz = F(z) — F(z1).
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.

@ The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)

@ Theorem: Let D be a domain in C and y be a contour in D with initial
and end points z; and z respectively. If f : D — C is a continuous
function with primitive F : D — C, then

/ f(z)dz = F(z) — F(z1).

i"_(V(t)) = F'(y(t))y'(t) therefore

Proof. Let v : [a, b] — C. Since g
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.

@ The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)

@ Theorem: Let D be a domain in C and y be a contour in D with initial
and end points z; and z respectively. If f : D — C is a continuous
function with primitive F : D — C, then

/ f(z)dz = F(z) — F(z1).

Proof. Let v : [a, b] — C. Since — F(v(t)) = F'(v(t))7'(t) therefore

b b
[ f@dz= [“fa@rmea = [ SFG@E

F(v(b)) — F(v(a)) = F(2) — F(a1).
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Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a
domain D is a function F such that F'(z) = f(z) for all z € D.

@ The primitive of a function is unique up to an additive constant.

@ The following theorem is an answer to the Question: When a line
integral of f does not depend on path?)

@ Theorem: Let D be a domain in C and y be a contour in D with initial
and end points z; and z respectively. If f : D — C is a continuous
function with primitive F : D — C, then

/ f(z)dz = F(z) — F(z1).

%F(V(t)) = F'(y(t))y'(t) therefore

b b
[ f@dz= [“fa@rmea = [ SFG@E

F(v(b)) — F(v(a)) = F(2) — F(a1).

Proof. Let v : [a, b] — C. Since

@ Corollary: In particular, if v is a closed contour then fW f(z)dz = 0.
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Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

71 1
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Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

71 1

z 3 3

) 2 —Z

(1) Pdz=2"2
2 3
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Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

z1 1

1

z 3 3
) 2 —Z
(1) z°dz = ——.
> 3
i

Q I cos zdz = sin(im) — sin(—im) = 2sin(ir).

—im
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Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

z1 1

1

z 3 3
) 2 —Z
(1) z°dz = ——.
> 3
i

Q cos zdz = sin(im) — sin(—im) = 2sin(ir).
(s ile*Lo (i) — Lo (fi)f"lfirfm
ZT 08 A N

—1i
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Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

71 1

1

z 3 3
) 2 —Z
(1) z°dz = ——.
> 3
i

Q cos zdz = sin(im) — sin(—im) = 2sin(ir).
(s ile*Lo (i) — Lo (fi)f"lfirfm
ZT 08 A N

—1
@ The function zi,,, n > 1 is continuous on C*. Thus the integral of the
above function on any contour joining nonzero complex numbers z;, z
not passing through origin is given by

2 dz 1 1
/ ;:_(n_l)( n—1 n71>'
2 2z Z

Lecture 8 Complex Integration



Antiderivatives

When such F exists we write

A F(2)dz = /22 f(z)dz = /22 F'(2)dz = F(2) — F(z1).

71 1

z 3 3
) 2 —Z
(1) z°dz = ——.
> 3
i

1

Q cos zdz = sin(im) — sin(—im) = 2sin(ir).
(s ile*Lo (i) — Lo (fi)f"lfirfm
T g =5 -

@ The function zi,,, n > 1 is continuous on C*. Thus the integral of the
above function on any contour joining nonzero complex numbers z;, z
not passing through origin is given by

2 dz 1 1
/ zn = _(n - 1) ( n—1 n71> .
z Z Z

. dz .
In particular we have / — = 0 where C any closed curve not possing
cz

through origin.
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Complex integration

@ So far, we get an answer to the following question:
@ Question: When a line integral of f does not depend on path?

@ We proved that "a line integral of f does not depend on a path if f has
primitive.
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Complex integration

@ So far, we get an answer to the following question:

@ Question: When a line integral of f does not depend on path?

@ We proved that "a line integral of f does not depend on a path if f has
primitive.

@ Now, we will come by an answer to the following question:

@ Question: Under what conditions on f we can guarantee the existence of
g such that g’ = 7
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Simply Connected
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Simply Connected

@ Definition: A domain D is called simply connected if every simple
closed contour (within it) encloses points of D only.
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Simply Connected

@ Definition: A domain D is called simply connected if every simple
closed contour (within it) encloses points of D only.

@ Examples:

e The whole complex plane C
e Any open disc
e The right half plane RHP = {z : Re z > 0}.
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Simply Connected

@ Definition: A domain D is called simply connected if every simple
closed contour (within it) encloses points of D only.

@ Examples:

e The whole complex plane C
e Any open disc
e The right half plane RHP = {z : Re z > 0}.

@ A domain D is called multiply connected if it is not simply connected.
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Simply Connected

@ Definition: A domain D is called simply connected if every simple
closed contour (within it) encloses points of D only.

@ Examples:

e The whole complex plane C
e Any open disc
e The right half plane RHP = {z : Re z > 0}.

@ A domain D is called multiply connected if it is not simply connected.

@ Examples:

e The sets C* = C\ {0}

° B(o,r)\{0},
o The annulus A(a,b) = {z € C: a < |z| < b}.
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Cauchy's Theorem

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply
connected domain D and C is a simple closed contour lying in D then

/C f(z)dz = 0.
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Cauchy's Theorem

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply
connected domain D and C is a simple closed contour lying in D then

/C f(z)dz = 0.

To prove the above theorem we need the following Green’s Theorem.

Green’s Theorem Let C be a positively orientated simple closed curve.
Let R be the domain that forms the interior of C. If u and v are
continuous and have continuous partial derivatives uy, u,, v, and v, at
all points on C then

/ udx + vdy = //[vx — uy]dxdy.
c R
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Cauchy's Theorem

Proof. Let f(z) = f(x + iy) = u(x,y) + iv(x,y) and C(t) = x(t) + iy(t),
a<t<bisthe curve C. Then

/Cf(z)dz - /abf(C(t))C/(t)dt

b
= / [u(x(t), y(£)) + iv(x(t), y(£))][X'(£) + iy ()]t
= / (ux — vy")dt + i/ (v’ + uy')dt

/udx—vdy+1/vdx+udy

// —Vx — uy)dxdy + I//(UX — vy )dxdy,

(by Green's theorem)

= 0 (by CR equations uyx = v, and u, = —vy).
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Cauchy's Theorem

Let C(t) = e, —x < t < 7, denotes the unit circle.
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Cauchy's Theorem

Let C(t) = e, —x < t < 7, denotes the unit circle.

@ It follows from Cauchy’s theorem that [ f(z)dz = 0, if f(z) = e*',
cosz, or sinz.
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Cauchy's Theorem

Let C(t) = e, —x < t < 7, denotes the unit circle.

@ It follows from Cauchy’s theorem that [ f(z)dz = 0, if f(z) = e*',
cosz, or sinz.

Q / f(z)dz=0if f(z) = %, or cosec?z from the fundamental theorem as
c

(-1 = % and 4 (—cotz) = cosec’z. Note that here Cauchy's
theorem cannot be applied as the integrands are not analytic at zero.
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Cauchy's Theorem

Let C(t) = e, —x < t < 7, denotes the unit circle.

@ It follows from Cauchy’s theorem that [ f(z)dz = 0, if f(z) = e*',
cosz, or sinz.

Q / f(z)dz=0if f(z) = %, or cosec?z from the fundamental theorem as
c

(-1 = % and 4 (—cotz) = cosec’z. Note that here Cauchy's
theorem cannot be applied as the integrands are not analytic at zero.

Q / 2e+ 4dz = 0 by Cauchy’s theorem. Note that the integrand is not
c”Z
analytic at z = £2 but that does not bother us as these points are not
enclosed by C.
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Cauchy's Theorem

Let C(t) = e, —x < t < 7, denotes the unit circle.

@ It follows from Cauchy’s theorem that [ f(z)dz = 0, if f(z) = e*',
cos z, or sinz.

Q / dz=0if f(z) = 2, or cosec’z from the fundamental theorem as

—1)=% and 4 (—cotz) = cosec’z. Note that here Cauchy's
theorem cannot be applied as the integrands are not analytic at zero.

Q / 2e+ 4dz = 0 by Cauchy’s theorem. Note that the integrand is not
cz

analytic at z = £2 but that does not bother us as these points are not
enclosed by C.

Q If f(z) = (Im z)? then / f(z)dz = 0 (check this). As f is not analytic

c
anywhere in C Cauchy's theorem can not be applied to prove this.
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Consequences of Cauchy's Theorem

@ Independence of path: Let D be a simply connected domain and
f: D — C analytic. Let z;, z» be two points in D. If 1 and 72 be two
simple contour joining z; and z such that the curves lie entirely in D

then,
[n f(z)dz = [yz f(z)dz.
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Consequences of Cauchy's Theorem

@ Independence of path: Let D be a simply connected domain and
f: D — C analytic. Let z;, z» be two points in D. If 1 and 72 be two
simple contour joining z; and z such that the curves lie entirely in D

then,
/ f(z)dz :/ f(z)dz.
" 72
@ Proof: If we define

) — 1(2t) ifo<t<1/2
(t) = n(t) =vR1-1t) if1/2<t<1

then ~ is a simple closed curve and

/Wl"(z)dz:[/1 f(z)dz+/nf(z)dz.

By Cauchy’s theorem
/ f(z)dz = 0.
-

From last two equations we get

/ﬂ F(z)dz = — /n F(z)dz = L £(z)dz.
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Consequences of Cauchy's Theorem

@ Following theorem is a answer to the question Under what conditions on
f we can guarantee the existence of g such that g’ = 7

@ Theorem: If f is an analytic function on a simply connected domain D
then there exists a function g, which is analytic on D such that g’ = f.
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Consequences of Cauchy's Theorem

@ Following theorem is a answer to the question Under what conditions on
f we can guarantee the existence of g such that g’ = 7

@ Theorem: If f is an analytic function on a simply connected domain D
then there exists a function g, which is analytic on D such that g’ = f.

e Proof. Fix a point zg € D and define

z
g(z) = / f(w)dw.
2y

e The integral is considered as a contour integral over any curve
lying in D and joining z with z.

o By the result the integral does not depend on the curve we
choose and hence the function g is well defined.

o We will show that g’ = f.
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Consequences of Cauchy's Theorem

@ If z+ h € D then
z+h z z+h
g(erh)fg(z):/ f(w)dwf/ f(W)dW:/ f(w)dw,
20 9 z

where the curve joining z and z + h can be considered as a straight line
I(t) = z+ th, t € [0,1]. Since [, f(z)dw = f(z)h therefore we get

‘w - f(z)‘ ‘% /jh(f(w) - f(z))dw' ,
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Consequences of Cauchy's Theorem

@ If z+ h € D then

z

gz +h) - g(2) = [ ) — /

20 20

z+h
f(w)dw = / f(w)dw,

where the curve joining z and z + h can be considered as a straight line
I(t) = z+ th, t € [0,1]. Since [, f(z)dw = f(z)h therefore we get

‘w - f(z)‘ - ‘% /jh(f(w) - f(z))dw' ,

@ Now f is continuous at z, then for any given ¢ > 0 there exist a 6 > 0
such that |f(z + h) — f(z2)| < e if |h| < 0.
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Consequences of Cauchy's Theorem

@ If z+ h € D then

z

st ) - g0 = [ rwaw— [“twaw = [ rwaw,

P} F))

where the curve joining z and z + h can be considered as a straight line
I(t) = z+ th, t € [0,1]. Since [, f(z)dw = f(z)h therefore we get

‘w - f(z)‘ - ‘% /jh(f(w) - f(z))dw' ,

@ Now f is continuous at z, then for any given ¢ > 0 there exist a 6 > 0
such that |f(z + h) — f(z2)| < e if |h| < 0.

@ Thus for |h| < § we get from ML-inequality that
1 [=th e|h
st — < — =&€
’h/z (f(w) f(z))dw‘ < T €

@ This show that g'(z) = ilzimo w = f(2).
—
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