MA 201 Complex Analysis Lecture 7: Complex Integration

Complex Integration

Integral of a complex valued function of real variable:

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$.

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$. Define,

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$. Define,

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

If $U^{\prime}=u$ and $V^{\prime}=v$ and $F(t)=U(t)+i V(t)$ then by fundamental theorem of calculus $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$. Define,

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

If $U^{\prime}=u$ and $V^{\prime}=v$ and $F(t)=U(t)+i V(t)$ then by fundamental
theorem of calculus $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

- For $\alpha \in \mathbb{R}, \int_{a}^{b} e^{i \alpha t} d t=\frac{e^{i \alpha b}-e^{i \alpha a}}{i \alpha}$.

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$. Define,

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

If $U^{\prime}=u$ and $V^{\prime}=v$ and $F(t)=U(t)+i V(t)$ then by fundamental
theorem of calculus $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

- For $\alpha \in \mathbb{R}, \int_{a}^{b} e^{i \alpha t} d t=\frac{e^{i \alpha b}-e^{i \alpha a}}{i \alpha}$.
- $\int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1}\left(1-t^{2}\right) d t+i \int_{0}^{1} 2 t d t=\frac{2}{3}+i$.

Complex Integration

Integral of a complex valued function of real variable:

- Definition: Let $f:[a, b] \rightarrow \mathbb{C}$ be a function. Then $f(t)=u(t)+i v(t)$ where $u, v:[a, b] \rightarrow \mathbb{R}$. Define,

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

If $U^{\prime}=u$ and $V^{\prime}=v$ and $F(t)=U(t)+i V(t)$ then by fundamental
theorem of calculus $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

- For $\alpha \in \mathbb{R}, \int_{a}^{b} e^{i \alpha t} d t=\frac{e^{i \alpha b}-e^{i \alpha a}}{i \alpha}$.
- $\int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1}\left(1-t^{2}\right) d t+i \int_{0}^{1} 2 t d t=\frac{2}{3}+i$.
- If $f:[a, b] \rightarrow \mathbb{C}$ piecewise continuous then $\int_{a}^{b} f(t) d t$ exists.

Complex integration

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.
- $\operatorname{Im}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Im}(f(t)) d t$.

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.
- $\operatorname{Im}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Im}(f(t)) d t$.
- $\int_{a}^{b}[f(t) \pm g(t)] d t=\int_{a}^{b} f(t) d t \pm \int_{a}^{b} g(t) d t$.

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.
- $\operatorname{Im}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Im}(f(t)) d t$.
- $\int_{a}^{b}[f(t) \pm g(t)] d t=\int_{a}^{b} f(t) d t \pm \int_{a}^{b} g(t) d t$.
- $\int_{a}^{b} \alpha f(t) d t=\alpha \int_{a}^{b} f(t) d t, \quad \alpha \in \mathbb{C}$

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.
- $\operatorname{Im}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Im}(f(t)) d t$.
- $\int_{a}^{b}[f(t) \pm g(t)] d t=\int_{a}^{b} f(t) d t \pm \int_{a}^{b} g(t) d t$.
- $\int_{a}^{b} \alpha f(t) d t=\alpha \int_{a}^{b} f(t) d t, \quad \alpha \in \mathbb{C}$
- $\int_{a}^{b} f(t) d t=-\int_{b}^{a} f(t) d t$.

Complex integration

- $\operatorname{Re}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}(f(t)) d t$.
- $\operatorname{Im}\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \operatorname{Im}(f(t)) d t$.
- $\int_{a}^{b}[f(t) \pm g(t)] d t=\int_{a}^{b} f(t) d t \pm \int_{a}^{b} g(t) d t$.
- $\int_{a}^{b} \alpha f(t) d t=\alpha \int_{a}^{b} f(t) d t, \quad \alpha \in \mathbb{C}$
- $\int_{a}^{b} f(t) d t=-\int_{b}^{a} f(t) d t$.
- $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t$.

Complex Integration

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Therefore,

Complex Integration

- $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$

Proof: Let $\int_{a}^{b} f(t) d t=R e^{i \theta}$ then,

$$
\begin{aligned}
R & =e^{-i \theta} \int_{a}^{b} f(t) d t=\int_{a}^{b} e^{-i \theta} f(t) d t \\
& =\operatorname{Re}\left(\int_{a}^{b} e^{-i \theta} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} f(t)\right) d t
\end{aligned}
$$

Complex Integration

- $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$

Proof: Let $\int_{a}^{b} f(t) d t=R e^{i \theta}$ then,

$$
\begin{aligned}
R & =e^{-i \theta} \int_{a}^{b} f(t) d t=\int_{a}^{b} e^{-i \theta} f(t) d t \\
& =\operatorname{Re}\left(\int_{a}^{b} e^{-i \theta} f(t) d t\right)=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} f(t)\right) d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|\int_{a}^{b} f(t) d t\right| & =R=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} f(t)\right) d t \\
& \leq \int_{a}^{b}\left|e^{-i \theta} f(t)\right| d t \leq \int_{a}^{b}|f(t)| d t
\end{aligned}
$$

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.

A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.

Definition: A curve γ is simple if it does not intersect itself except possibly at end points. That means

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.
- $\gamma_{1}(t)=e^{i t}, t \in[0,1] ; \quad \gamma_{2}(t)=(1-t) a+t b, t \in[0,1]$. Definition: A curve γ is simple if it does not intersect itself except possibly at end points. That means

Deilition: A curve \sim is said to be a closed curve if $\cap(a)=\gamma(b)$.

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.
- $\gamma_{1}(t)=e^{i t}, t \in[0,1] ; \quad \gamma_{2}(t)=(1-t) a+t b, t \in[0,1]$.
- Definition: A curve γ is simple if it does not intersect itself except possibly at end points. That means $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ when $a<t_{1}<t_{2}<b$. Definition: A curve γ is said to be a closed curve if $\gamma(a)=\gamma(b)$ Definition: A curve γ is simple and closed the we say that closed curve or Jordan curve.

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.
- $\gamma_{1}(t)=e^{i t}, t \in[0,1] ; \quad \gamma_{2}(t)=(1-t) a+t b, t \in[0,1]$.
- Definition: A curve γ is simple if it does not intersect itself except possibly at end points. That means $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ when $a<t_{1}<t_{2}<b$.
- Definition: A curve γ is said to be a closed curve if $\gamma(a)=\gamma(b)$.

Definition: A curve γ is simple and closed the we say that closed curve or Jordan curve.

Complex integration

- Definition: A curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. So $\gamma(t)=x(t)+i y(t)$ with $x, y:[a, b] \rightarrow \mathbb{R}$.
- A curve γ is called a smooth curve if γ is differentiable and γ^{\prime} is continuous and nonzero for all t.
- A contour/piecewise smooth curve is a curve that is obtained by joining finitely many smooth curves end to end.
- $\gamma_{1}(t)=e^{i t}, t \in[0,1] ; \quad \gamma_{2}(t)=(1-t) a+t b, t \in[0,1]$.
- Definition: A curve γ is simple if it does not intersect itself except possibly at end points. That means $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ when $a<t_{1}<t_{2}<b$.
- Definition: A curve γ is said to be a closed curve if $\gamma(a)=\gamma(b)$.
- Definition: A curve γ is simple and closed the we say that γ is a simple closed curve or Jordan curve.

Complex integration

- Orientation: Let γ be a simple closed contour with parametrization $\gamma(t), t \in[a, b]$. As t moves from a to b, the curve γ moves in a specific direction called the orientation of the curve induced by the parametrization.
 negatively (clockwise direction).

Complex integration

- Orientation: Let γ be a simple closed contour with parametrization $\gamma(t), t \in[a, b]$. As t moves from a to b, the curve γ moves in a specific direction called the orientation of the curve induced by the parametrization.
- Convention:If the interior bounded domain of γ is kept on the left as t moves from a to b, then we say the orientation is in the positive sense (counter clockwise or anticlockwise sense). Otherwise γ is oriented negatively (clockwise direction).
- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve then the curve with the reverse orientation is denoted as $-\gamma$ and is defined as

Complex integration

- Orientation: Let γ be a simple closed contour with parametrization $\gamma(t), t \in[a, b]$. As t moves from a to b, the curve γ moves in a specific direction called the orientation of the curve induced by the parametrization.
- Convention:If the interior bounded domain of γ is kept on the left as t moves from a to b, then we say the orientation is in the positive sense (counter clockwise or anticlockwise sense). Otherwise γ is oriented negatively (clockwise direction).
- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve then the curve with the reverse orientation is denoted as $-\gamma$ and is defined as

$$
-\gamma:[a, b] \rightarrow \mathbb{C}, ; \quad-\gamma(t)=\gamma(b+a-t)
$$

Complex integration

- Orientation: Let γ be a simple closed contour with parametrization $\gamma(t), t \in[a, b]$. As t moves from a to b, the curve γ moves in a specific direction called the orientation of the curve induced by the parametrization.
- Convention:If the interior bounded domain of γ is kept on the left as t moves from a to b, then we say the orientation is in the positive sense (counter clockwise or anticlockwise sense). Otherwise γ is oriented negatively (clockwise direction).
- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve then the curve with the reverse orientation is denoted as $-\gamma$ and is defined as

$$
-\gamma:[a, b] \rightarrow \mathbb{C}, ; \quad-\gamma(t)=\gamma(b+a-t)
$$

- $\gamma(t)=e^{i t}, t \in[0,2 \pi]$ (Positive orientation)

Complex integration

- Orientation: Let γ be a simple closed contour with parametrization $\gamma(t), t \in[a, b]$. As t moves from a to b, the curve γ moves in a specific direction called the orientation of the curve induced by the parametrization.
- Convention:If the interior bounded domain of γ is kept on the left as t moves from a to b, then we say the orientation is in the positive sense (counter clockwise or anticlockwise sense). Otherwise γ is oriented negatively (clockwise direction).
- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve then the curve with the reverse orientation is denoted as $-\gamma$ and is defined as

$$
-\gamma:[a, b] \rightarrow \mathbb{C}, ; \quad-\gamma(t)=\gamma(b+a-t)
$$

- $\gamma(t)=e^{i t}, t \in[0,2 \pi]$ (Positive orientation) where as $\gamma(t)=e^{i(2 \pi-t)}, t \in[0,2 \pi]$ (Negative orientation)

Complex integration

- Let γ be a piecewise smooth curve defined on $[a, b]$. The length of γ is given by

$$
L(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t .
$$

Definition: Let $\gamma(t) ; t \in[a, b]$, be a contour and f be complex valued continuous function defined on a set containing γ then the line integral or the contour integral of f along the curve γ is defined by

Complex integration

- Let γ be a piecewise smooth curve defined on $[a, b]$. The length of γ is given by

$$
L(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t .
$$

- Definition: Let $\gamma(t) ; t \in[a, b]$, be a contour and f be complex valued continuous function defined on a set containing γ then the line integral or the contour integral of f along the curve γ is defined by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t .
$$

Complex integration

Example: Let $f(z)=\bar{z}$.

Complex integration

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then,

$$
\int_{\gamma_{1}} \bar{z} d z=\int_{0}^{\pi} \overline{\gamma_{1}(t)} \gamma_{1}^{\prime}(t) d t=\int_{0}^{\pi} e^{-i t}(i) e^{i t} d t=i \pi
$$

- In the above example γ_{1} and γ_{2} are two paths joining 1 and -1 . But the line integral along the paths γ_{1} and γ_{2} are NOT same.

Complex integration

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then,

$$
\int_{\gamma_{1}} \bar{z} d z=\int_{0}^{\pi} \overline{\gamma_{1}(t)} \gamma_{1}^{\prime}(t) d t=\int_{0}^{\pi} e^{-i t}(i) e^{i t} d t=i \pi
$$

- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then,

$$
\int_{\gamma_{2}} \bar{z} d z=\int_{0}^{1} \overline{\gamma_{2}(t)} \gamma_{2}^{\prime}(t) d t=\int_{0}^{1}[1-2 t](-2) d t=0
$$

Complex integration

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then,

$$
\int_{\gamma_{1}} \bar{z} d z=\int_{0}^{\pi} \overline{\gamma_{1}(t)} \gamma_{1}^{\prime}(t) d t=\int_{0}^{\pi} e^{-i t}(i) e^{i t} d t=i \pi
$$

- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then,

$$
\int_{\gamma_{2}} \bar{z} d z=\int_{0}^{1} \overline{\gamma_{2}(t)} \gamma_{2}^{\prime}(t) d t=\int_{0}^{1}[1-2 t](-2) d t=0
$$

- In the above example γ_{1} and γ_{2} are two paths joining 1 and -1 . But the line integral along the paths γ_{1} and γ_{2} are NOT same.

Complex integration

Example: Let $f(z)=\bar{z}$.

- If $\gamma_{1}(t)=e^{i t}, t \in[0, \pi]$ then,

$$
\int_{\gamma_{1}} \bar{z} d z=\int_{0}^{\pi} \overline{\gamma_{1}(t)} \gamma_{1}^{\prime}(t) d t=\int_{0}^{\pi} e^{-i t}(i) e^{i t} d t=i \pi
$$

- If $\gamma_{2}(t)=1(1-t)+t .(-1)=1-2 t, t \in[0,1]$ then,

$$
\int_{\gamma_{2}} \bar{z} d z=\int_{0}^{1} \overline{\gamma_{2}(t)} \gamma_{2}^{\prime}(t) d t=\int_{0}^{1}[1-2 t](-2) d t=0
$$

- In the above example γ_{1} and γ_{2} are two paths joining 1 and -1 . But the line integral along the paths γ_{1} and γ_{2} are NOT same.
- Question: When a line integral of f does not depend on path?

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{C_{a, r}}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $C_{a, r}$ denotes the circle of radius r centered at a.

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{C_{a, r}}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $C_{\mathrm{a}, r}$ denotes the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z
$$

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{C_{a, r}}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $C_{a, r}$ denotes the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z
$$

- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve and $a<c<b$. If $\gamma_{1}=\left.\gamma\right|_{[a, c]}$ and $\gamma_{2}=\left.\gamma\right|_{[c, b]}$ then

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z
$$

Complex integration

- (The fundamental integral) For $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$

$$
\int_{C_{a, r}}(z-a)^{n} d z=\left\{\begin{array}{lll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $C_{a, r}$ denotes the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then

$$
\int_{\gamma}[\alpha f \pm g](z) d z=\alpha \int_{\gamma} f(z) d z \pm \int_{\gamma} g(z) d z
$$

- Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve and $a<c<b$. If $\gamma_{1}=\left.\gamma\right|_{[a, c]}$ and $\gamma_{2}=\left.\gamma\right|_{[c, b]}$ then

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z .
$$

- $\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z$.

Complex integration

ML-inequality:

Complex integration

ML-inequality:

- Let f be a piecewise continuous function and let γ be a contour. If $|f(z)| \leq M$ for all $z \in \gamma$ and $L=$ length of γ then

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{a}^{b} \mid f\left(\gamma(t)| | \gamma^{\prime}(t)\left|d t \leq M \int_{a}^{b}\right| \gamma^{\prime}(t) \mid d t=M L\right.
$$

Complex integration

ML-inequality:

- Let f be a piecewise continuous function and let γ be a contour. If $|f(z)| \leq M$ for all $z \in \gamma$ and $L=$ length of γ then

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{a}^{b} \mid f\left(\gamma(t)| | \gamma^{\prime}(t)\left|d t \leq M \int_{a}^{b}\right| \gamma^{\prime}(t) \mid d t=M L\right.
$$

- Let $\gamma(t)=2 e^{i t}, t \in\left[0, \frac{\pi}{2}\right]$ and $f(z)=\frac{z+4}{z^{3}-1}$. Then by ML-ineuqality

$$
\left|\int_{\gamma} f(z) d z\right| \leq \frac{6 \pi}{7}
$$

Antiderivatives

- Answer to the Question: When a line integral of f does not depend on path?
- Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$. The primitive of a function is unique up to an additive constant.

Theorem: Let f be a continuous function defined on a domain D and $f(z)$ has antiderivative $F(z)$ in D. Let $z_{1}, z_{2} \in D$. Then for any contour C lying in D starting from z_{1}, and ending at z_{2} the value of the integral

Antiderivatives

- Answer to the Question: When a line integral of f does not depend on path?
- Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$. The primitive of a function is unique up to an additive constant.
- Theorem: Let f be a continuous function defined on a domain D and $f(z)$ has antiderivative $F(z)$ in D. Let z_{1}, z_{2}
lying in D starting from z_{1}, and ending at $f(z) d z$
is independent of the contour.

Antiderivatives

- Answer to the Question: When a line integral of f does not depend on path?
- Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that $F^{\prime}(z)=f(z)$ for all $z \in D$. The primitive of a function is unique up to an additive constant.
- Theorem: Let f be a continuous function defined on a domain D and $f(z)$ has antiderivative $F(z)$ in D. Let $z_{1}, z_{2} \in D$. Then for any contour C lying in D starting from z_{1}, and ending at z_{2} the value of the integral

$$
\int_{C} f(z) d z
$$

is independent of the contour.

Antiderivatives

- Proof. Suppose that C is given by a map $\gamma:[a, b] \rightarrow \mathbb{C}$. Then $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Hence

Antiderivatives

- Proof. Suppose that C is given by a map $\gamma:[a, b] \rightarrow \mathbb{C}$. Then $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Hence

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t \\
& =F(\gamma(a))-F(\gamma(b))=F\left(z_{2}\right)-F\left(z_{1}\right) .
\end{aligned}
$$

- When such F exists we write
- In particular, $\int_{C} f(z) d z=0$ if C is a closed contour

Antiderivatives

- Proof. Suppose that C is given by a map $\gamma:[a, b] \rightarrow \mathbb{C}$. Then $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Hence

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t \\
& =F(\gamma(a))-F(\gamma(b))=F\left(z_{2}\right)-F\left(z_{1}\right) .
\end{aligned}
$$

- When such F exists we write

$$
\int_{C} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{1}\right)-F\left(z_{2}\right) .
$$

Antiderivatives

- Proof. Suppose that C is given by a map $\gamma:[a, b] \rightarrow \mathbb{C}$. Then $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Hence

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t \\
& =F(\gamma(a))-F(\gamma(b))=F\left(z_{2}\right)-F\left(z_{1}\right) .
\end{aligned}
$$

- When such F exists we write

$$
\int_{C} f(z) d z=\int_{z_{1}}^{z_{2}} f(z) d z=\int_{z_{1}}^{z_{2}} F^{\prime}(z) d z=F\left(z_{1}\right)-F\left(z_{2}\right) .
$$

- In particular, $\int_{C} f(z) d z=0$ if C is a closed contour.

Antiderivatives

Antiderivatives

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.

Antiderivatives

- $\int_{z_{1}}^{22} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(4) The function $\frac{1}{z^{n}}, n>1$ is continuous on \mathbb{C}^{*}. If γ is a contour joining nonzero complex numbers z_{1}, z_{2} not passing through origin then

Antiderivatives

(1) $\int_{z_{1}}^{22} z^{2} d z=\frac{z^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(3) $\int_{-i}^{i} \frac{1}{z} d z=\log (i)-\log (-i)=\frac{i \pi}{2}-\frac{-i \pi}{2}=i \pi$.

Antiderivatives

(1) $\int_{z_{1}}^{z_{2}} z^{2} d z=\frac{z_{2}^{3}-z_{1}^{3}}{3}$.
(2) $\int_{-i \pi}^{i \pi} \cos z d z=\sin (i \pi)-\sin (-i \pi)=2 \sin (i \pi)$.
(3) $\int_{-i}^{i} \frac{1}{z} d z=\log (i)-\log (-i)=\frac{i \pi}{2}-\frac{-i \pi}{2}=i \pi$.
(9) The function $\frac{1}{z^{n}}, n>1$ is continuous on \mathbb{C}^{*}. If γ is a contour joining nonzero complex numbers z_{1}, z_{2} not passing through origin then

$$
\int_{\gamma} \frac{d z}{z^{n}}=-(n-1)\left(\frac{1}{z_{2}^{n-1}}-\frac{1}{z_{1}^{n-1}}\right) .
$$

