
MA 201 Complex Analysis
Lecture 7: Complex Integration

Lecture 7 Complex Integration



Complex Integration

Integral of a complex valued function of real variable:

Definition: Let f : [a, b]→ C be a function. Then f (t) = u(t) + iv(t)
where u, v : [a, b]→ R.Define,∫ b

a

f (t)dt =

∫ b

a

u(t)dt + i

∫ b

a

v(t)dt.

If U ′ = u and V ′ = v and F (t) = U(t) + iV (t) then by fundamental

theorem of calculus

∫ b

a

f (t)dt = F (b)− F (a).

For α ∈ R,
∫ b

a

e iαtdt =
e iαb − e iαa

iα
.∫ 1

0

(1 + it)2 dt =

∫ 1

0

(1− t2) dt + i

∫ 1

0

2t dt =
2

3
+ i .

If f : [a, b]→ C piecewise continuous then

∫ b

a

f (t)dt exists.
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Complex integration

Re

(∫ b

a
f (t)dt

)
=

∫ b

a
Re (f (t))dt.

Im

(∫ b

a
f (t)dt

)
=

∫ b

a
Im (f (t))dt.

∫ b

a
[f (t)± g(t)]dt =

∫ b

a
f (t)dt ±

∫ b

a
g(t)dt.

∫ b

a
αf (t)dt = α

∫ b

a
f (t)dt, α ∈ C

∫ b

a
f (t)dt = −

∫ a

b
f (t)dt.

∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt.
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Complex Integration

∣∣∣∣∫ b

a

f (t)dt

∣∣∣∣ ≤ ∫ b

a

|f (t)|dt

Proof: Let

∫ b

a

f (t)dt = Re iθ then,

R = e−iθ

∫ b

a

f (t)dt =

∫ b

a

e−iθf (t)dt

= Re

(∫ b

a

e−iθf (t)dt

)
=

∫ b

a

Re (e−iθf (t))dt.

Therefore, ∣∣∣∣∫ b

a

f (t)dt

∣∣∣∣ = R =

∫ b

a

Re (e−iθf (t))dt

≤
∫ b

a

|e−iθf (t)|dt ≤
∫ b

a

|f (t)|dt.
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Complex integration

Definition: A curve is a continuous function γ : [a, b]→ C. So
γ(t) = x(t) + iy(t) with x , y : [a, b]→ R.

A curve γ is called a smooth curve if γ is differentiable and γ′ is
continuous and nonzero for all t.

A contour/piecewise smooth curve is a curve that is obtained by
joining finitely many smooth curves end to end.

γ1(t) = e it , t ∈ [0, 1]; γ2(t) = (1− t)a + tb, t ∈ [0, 1].

Definition: A curve γ is simple if it does not intersect itself except
possibly at end points. That means γ(t1) 6= γ(t2) when a < t1 < t2 < b.

Definition: A curve γ is said to be a closed curve if γ(a) = γ(b).

Definition: A curve γ is simple and closed the we say that γ is a simple
closed curve or Jordan curve.
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Complex integration

Orientation: Let γ be a simple closed contour with parametrization
γ(t), t ∈ [a, b]. As t moves from a to b, the curve γ moves in a specific
direction called the orientation of the curve induced by the
parametrization.

Convention:If the interior bounded domain of γ is kept on the left as t
moves from a to b, then we say the orientation is in the positive sense
(counter clockwise or anticlockwise sense). Otherwise γ is oriented
negatively (clockwise direction).

Let γ : [a, b]→ C be a curve then the curve with the reverse orientation
is denoted as −γ and is defined as

−γ : [a, b]→ C, ; −γ(t) = γ(b + a− t).

γ(t) = e it , t ∈ [0, 2π] (Positive orientation)

where as γ(t) = e i(2π−t), t ∈ [0, 2π] (Negative orientation)
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Complex integration

Let γ be a piecewise smooth curve defined on [a, b]. The length of γ is
given by

L(γ) =

∫ b

a

|γ′(t)|dt.

Definition: Let γ(t); t ∈ [a, b], be a contour and f be complex valued
continuous function defined on a set containing γ then the line integral
or the contour integral of f along the curve γ is defined by∫

γ

f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt.
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continuous function defined on a set containing γ then the line integral
or the contour integral of f along the curve γ is defined by∫

γ

f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt.
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Complex integration

Example: Let f (z) = z̄ .

If γ1(t) = e it , t ∈ [0, π] then,∫
γ1

z̄dz =

∫ π

0

γ1(t)γ′1(t)dt =

∫ π

0

e−it(i)e itdt = iπ.

If γ2(t) = 1(1− t) + t.(−1) = 1− 2t, t ∈ [0, 1] then,∫
γ2

z̄dz =

∫ 1

0

γ2(t)γ′2(t)dt =

∫ 1

0

[1− 2t](−2)dt = 0.

In the above example γ1 and γ2 are two paths joining 1 and −1. But the
line integral along the paths γ1 and γ2 are NOT same.

Question: When a line integral of f does not depend on path?
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Complex integration

(The fundamental integral) For a ∈ C, r > 0 and n ∈ Z∫
Ca,r

(z − a)ndz =

{
0 if n 6= −1

2πi if n = −1

where Ca,r denotes the circle of radius r centered at a.

Let f , g be piecewise continuous complex valued functions then∫
γ

[αf ± g ](z)dz = α

∫
γ

f (z)dz ±
∫
γ

g(z)dz .

Let γ : [a, b]→ C be a curve and a < c < b. If γ1 = γ|[a,c] and
γ2 = γ|[c,b] then ∫

γ

f (z)dz =

∫
γ1

f (z)dz +

∫
γ2

f (z)dz .

∫
−γ

f (z)dz = −
∫
γ

f (z)dz .
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Complex integration

ML-inequality:

Let f be a piecewise continuous function and let γ be a contour. If
|f (z)| ≤ M for all z ∈ γ and L =length of γ then∣∣∣∣∫

γ

f (z)dz

∣∣∣∣ ≤ ∫ b

a

|f (γ(t)||γ′(t)|dt ≤ M

∫ b

a

|γ′(t)|dt = ML.

Let γ(t) = 2e it , t ∈ [0, π
2

] and f (z) =
z + 4

z3 − 1
. Then by ML-ineuqality∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ 6π

7
.
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Antiderivatives

Answer to the Question: When a line integral of f does not depend on
path?

Definition: The antiderivative or primitive of a continuous function f in
a domain D is a function F such that F ′(z) = f (z) for all z ∈ D. The
primitive of a function is unique up to an additive constant.

Theorem: Let f be a continuous function defined on a domain D and
f (z) has antiderivative F (z) in D. Let z1, z2 ∈ D. Then for any contour C
lying in D starting from z1, and ending at z2 the value of the integral∫

C

f (z)dz

is independent of the contour.
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Antiderivatives

Proof. Suppose that C is given by a map γ : [a, b]→ C. Then
d
dt
F (γ(t)) = F ′(γ(t))γ′(t). Hence∫

C

f (z)dz =

∫ b

a

f (γ(t))γ′(t)dt

=

∫ b

a

d

dt
F (γ(t))dt

= F (γ(a))− F (γ(b)) = F (z2)− F (z1).

When such F exists we write∫
C

f (z)dz =

∫ z2

z1

f (z)dz =

∫ z2

z1

F ′(z)dz = F (z1)− F (z2).

In particular,

∫
C

f (z)dz = 0 if C is a closed contour.
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Antiderivatives

1

∫ z2

z1

z2dz =
z32 − z31

3
.

2

∫ iπ

−iπ

cos zdz = sin(iπ)− sin(−iπ) = 2 sin(iπ).

3

∫ i

−i

1

z
dz = Log (i)− Log (−i) =

iπ

2
− −iπ

2
= iπ.

4 The function 1
zn
, n > 1 is continuous on C∗. If γ is a contour joining

nonzero complex numbers z1, z2 not passing through origin then∫
γ

dz

zn
= −(n − 1)

(
1

zn−1
2

− 1

zn−1
1

)
.
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