MA 201 Complex Analysis
 Lecture 6: Elementary functions

Recall:

- Euler's Formula: For $y \in \mathbb{R}, e^{i y}=\cos y+i \sin y$
- and for any $x, y \in \mathbb{R}, e^{x+y}=e^{x} e^{y}$.

Definition: If $z=x+i y$, then e^{z} or $\exp (z)$ is defined by the formula

$$
e^{z}=e^{(x+i y)}=e^{x}(\cos y+i \sin y)
$$

Image of following sets under exponential function:

- $\left\{\left(x, y_{0}\right): x \in \mathbb{R}\right\} \longmapsto\left\{(r, \theta): r=e^{x}, x \in \mathbb{R}, \theta=y_{0}\right\}$.
- $\left\{\left(x_{0}, y\right): y \in \mathbb{R}\right\} \longmapsto\left\{(r, \theta): r=e^{x_{0}}, \theta \in \mathbb{R}\right\}$.
- $\{(x, y): a \leq x \leq b, c \leq y \leq d\} \longmapsto\left\{(r, \theta): e^{a} \leq r \leq e^{b}, c \leq \theta \leq d\right\}$.

Properties of Exponential Function

- $e^{0}=1$
- $\overline{e^{z}}=e^{\bar{z}},\left|e^{z}\right| \leq e^{|z|}$.
- $e^{z} \neq 0$, for all $z \in \mathbb{C}$. Look at $\left|e^{z}\right|=\left|e^{x}\right|\left|e^{i y}\right|=e^{x} \neq 0$.
- For all $z, w \in \mathbb{C}, e^{z+w}=e^{z} e^{w}$.
- Indeed, if $z=x+i y, w=s+i t$ then,

$$
\begin{aligned}
e^{z+w} & =e^{(x+s)+i(y+t)}=e^{(x+s)}[\cos (y+t)+i \sin (y+t)] \\
& =e^{x} e^{s}[(\cos y \cos t-\sin y \sin t)+i(\sin y \cos t+\cos y \sin t)] \\
& =\left[e^{x}(\cos y+i \sin y)\right]\left[e^{s}(\cos t+i \sin t)\right] \\
& =e^{z} e^{w}
\end{aligned}
$$

Properties of Exponential function

- A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called periodic if there is a $w \in \mathbb{C}$ (called a period) such that $f(z+w)=f(z)$ for all $z \in \mathbb{C}$.
- e^{z} is periodic function with period $2 \pi i$.
- e^{z} is not injective unlike real exponential.
- Since $e^{z}=e^{x} \cos y+i e^{x} \sin y$ satisfies $C-R$ equation on \mathbb{C} and has continuous first order partial derivatives. Therefore e^{z} is an entire function.
- In fact $\frac{d}{d z} e^{z}=\frac{\partial}{\partial x}\left(e^{x} \cos y\right)+i \frac{\partial}{\partial x}\left(e^{x} \sin y\right)=e^{z}$.

Define

$$
\sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) ; \quad \cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)
$$

Properties:

- $\sin ^{2} z+\cos ^{2} z=1$
- $\sin (z+w)=\sin z \cos w+\cos z \sin w$
- $\cos (z+w)=\cos z \cos w-\sin z \sin w$
- $\sin (-z)=-\sin z$ and $\cos (-z)=\cos z$
- $\sin (z+2 k \pi)=\sin z$, and $\cos (z+2 k \pi)=\cos z$
- $\sin z=0 \Longleftrightarrow z=n \pi$ and $\cos z=0 \Longleftrightarrow z=\left(n+\frac{1}{2}\right) \pi, \quad n \in \mathbb{Z}$.
- $\sin z, \cos z$ are entire functions.
- $\frac{d}{d z}(\sin z)=\cos z$ and $\frac{d}{d z}(\cos z)=-\sin z$.
- $\sin z$ and $\cos z$ are unbounded functions.

Define:

- $\tan z=\frac{\sin z}{\cos z}$
- $\cot z=\frac{\cos z}{\sin z}$
- $\sec z=\frac{1}{\cos z}$
- $\csc z=\frac{1}{\sin z}$.
- Hyperbolic Trigonometric functions: Define

$$
\sinh z=\frac{e^{z}-e^{-z}}{2} ; \quad \text { and } \quad \cosh z=\frac{e^{z}+e^{-z}}{2}
$$

- Properties:
- $\sinh z, \cosh z$ are entire functions.
- $\cosh ^{2} z-\sinh ^{2} z=1$.
- $\sinh (-z)=-\sinh z, \cosh (-z)=\cosh z$,
- $\sinh (z+2 k \pi)=\sinh z, \cosh (z+2 k \pi)=\cosh z, k \in \mathbb{Z}$.
- $\sinh (i z)=i \sin z$ and $\cos (i z)=\cos z$
- $\sin z=\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y$,
- $\cos z=\cos (x+i y)=\cos x \cosh y-i \sin x \sinh y$.

Complex Logarithm

- Note that e^{2} is an onto function from \mathbb{C} to $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. In fact if $w \in \mathbb{C}^{*}$ then $w=|w| e^{i \theta}$ where $\theta \in(-\pi, \pi]$. If we set $z=\log |w|+i \theta$ then,

$$
e^{z}=e^{\log |w|+i \theta}=e^{\log |w|} e^{i \theta}=w .
$$

- e^{2} is not an injective function as $e^{z+2 \pi i k}=e^{z}, k \in \mathbb{Z}$. But if we restrict the domain then it becomes injective.
- In particular if

$$
H=\{z=x+i y:-\pi<y \leq \pi\}
$$

then $z \rightarrow e^{z}$ is a bijective function from H to $\mathbb{C} \backslash\{0\}$.
Question: What is the inverse of this function?

Complex Logarithm

Definition: For $z \in \mathbb{C}^{*}$, define $\log z=\ln |z|+i \arg z$.

- $\ln |z|$ stands for the real logarithm of $|z|$.
- Since $\arg z=\operatorname{Arg} z+2 k \pi, k \in \mathbb{Z}$ it follows that $\log z$ is not well defined as a function. (multivalued)
- For $z \in \mathbb{C}^{*}$, the principal value of the logarithm is defined as $\log z=\ln |z|+i \operatorname{Arg} z$.
- Log : $\mathbb{C}^{*} \rightarrow\{z=x+i y:-\pi<y \leq \pi\}$ is well defined (single valued).
- $\log z+2 k \pi i=\log z$ for some $k \in \mathbb{Z}$.

Complex Logarithm

- If $z \neq 0$ then $e^{\log z}=e^{\ln |z|+i \operatorname{Arg} z}=z$
- What about $\log \left(e^{z}\right)$?.
- Suppose x is a positive real number then $\log x=\ln x+i \operatorname{Arg} x=\ln x$.
- $\log i=\ln |i|+i \frac{\pi}{2}=\frac{i \pi}{2}$,
- Log $(-1)=\ln |-1|+i \pi=i \pi$,
- $\log (-i)=\ln |-i|+i \frac{-\pi}{2}=-\frac{i \pi}{2}$,
- $\log (-e)=1+i \pi$

Complex Logarithm

- The function $\log z$ is not continuous on the negative real axis $\mathbb{R}^{-}=\{z=x+i y: x<0, y=0\}$.

To see this consider the point $z=-\alpha, \alpha>0$. Consider the sequences

$$
\left\{a_{n}=\alpha e^{i\left(\pi-\frac{1}{n}\right)}\right\} \text { and }\left\{b_{n}=\alpha e^{i\left(-\pi+\frac{1}{n}\right)}\right\}
$$

Then

$$
\lim _{n \rightarrow \infty} a_{n}=z=\lim _{n \rightarrow \infty} b_{n}
$$

but

$$
\lim _{n \rightarrow \infty} \log a_{n}=\lim _{n \rightarrow \infty} \ln \alpha+i\left(\pi-\frac{1}{n}\right)=\ln \alpha+i \pi
$$

and

$$
\lim _{n \rightarrow \infty} \log b_{n}=\ln \alpha-i \pi
$$

Complex Logarithm

- The function $z \rightarrow \log z$ is analytic on the set $\mathbb{C}^{*} \backslash \mathbb{R}^{-}$. Let $z=r e^{i \theta} \neq 0$ and $\theta \in(-\pi, \pi)$. Then

$$
\log z=\ln r+i \theta=u(r, \theta)+i v(r, \theta)
$$

with $u(r, \theta)=\ln r$ and $v(r, \theta)=\theta$. Then

$$
u_{r}=\frac{1}{r} v_{\theta}=\frac{1}{r} \quad \text { and } \quad v_{r}=-\frac{1}{r} u_{\theta} .
$$

- The identity

$$
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}
$$

is not always valid. However, the above identity is true if and only if $\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2} \in(-\pi, \pi]$ (why?).

Complex Logarithm

- Branch of a multiple valued function: Let F be a multiple valued function defined on a domain D. A function f is said to be a branch of the multiple valued function F if in a domain $D_{0} \subset D$ if $f(z)$ is single valued and analytic in D_{0}.
- Branch Cut: The portion of a line or a curve introduced in order to define a branch of a multiple valued function is called branch cut.
- Branch Point: Any point that is common to all branch cuts is called a branch point.

Complex Exponents

Let $w \in \mathbb{C}$. For any $z \neq 0$, define

$$
z^{w}=\exp (w \log z)
$$

where "exp" is the exponential function and log is the multiple valued logarithmic function.

- z^{w} is a multiple valued function.
- $i^{i}=\exp [i \log i]=\exp \left[i\left(\log 1+i \frac{\pi}{2}\right)\right]=\exp \left(-\frac{\pi}{2}\right)$.

