MA 201 Complex Analysis
 Lecture 5: Analytic functions

Analytic functions

- Definition: A function f is called analytic at a point $z_{0} \in \mathbb{C}$ if there exist $r>0$ such that f is differentiable at every point $z \in B\left(z_{0}, r\right)$.
- A function is called analytic in an open set $U \subseteq \mathbb{C}$ if it is analytic at each point U.
- An entire is a function which is analytic on the whole complex plane \mathbb{C}.
- For $n \in \mathbb{N}$ and complex numbers a_{0}, \ldots, a_{n} the polynomial
$f(z)=\sum_{k=0}^{n} a_{k} z^{k}$ entire.
- The function $f(z)=\frac{1}{z}$ is analytic for all $z \neq 0$ (hence not entire).
- Analyticity \Longrightarrow Differentiability, where as Differentiability \nRightarrow Analyticity.
- Example: The function $f(z)=|z|^{2}$ is differentiable only at $z=0$ however it is not analytic at any point.

Analytic functions

Let $f(z)=u(x, y)+i v(x, y)$ be defined on an open set $D \subseteq \mathbb{C}$.

- f is analytic on $D \Longrightarrow f$ satisfies CR Equation on D.
- f satisfies CR Equation on D and u, v has continuous first order partial derivatives on $D \Longrightarrow f$ is differentiable on $D \Longrightarrow f$ is analytic on D
- Suppose f, g are analytic in an open set D. Then $f \pm g, f g, \frac{f}{g}(g \neq 0), \alpha f(\alpha \in \mathbb{C})$ are analytic on D.
- Composition of analytic functions is analytic.
- Let f is analytic in a domain D. If the real part or imaginary part or argument or modulus of f is constant then f is constant in D.

Harmonic Functions

- Harmonic functions: A real valued function $\phi(x, y)$ is said to be harmonic in a domain D if
(1) all the partial derivatives up to second order exists and continuous on D
(2) ϕ satisfies the Laplace equation $\phi_{x x}(x, y)+\phi_{y y}(x, y)=0$ at each point of D.
- Theorem: If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then the functions $u(x, y)$ and $v(x, y)$ are harmonic in D.
Proof: Since f is analytic in D, f satisfies the CR equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ in D.
Now, it gives that $u_{x x}=v_{y x}$ and $u_{y y}=-v_{x y}$. Consequently, $u_{x x}+u_{y y}=v_{y x}-v_{x y}=0$. Therefore, u is harmonic in D. Similarly, one can show that v is harmonic in D.

Note: We have used the fact that all the second order partial derivatives ($u_{x x}, u_{x y}, u_{y y}, v_{x x}, v_{x y}, v_{y y}$) exists which will follow from the fact that "if f is analytic at a point then its derivatives of all orders exists at that point". (Prove Later!)

Harmonic Conjugate

Let D be a domain and $u: D \rightarrow \mathbb{R}$ is harmonic. Does there exists a harmonic function $v: D \rightarrow \mathbb{R}$ such that $f(z)=u(x, y)+i v(x, y)$ is analytic in D ? If such harmonic function $v: D \rightarrow \mathbb{R}$ exists then v is called the harmonic conjugate of u.

- The function $v(x, y)=2 x y$ is a harmonic conjugate of $u(x, y)=x^{2}-y^{2}$ in \mathbb{C}. The function $f(z)=z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$ is analytic in \mathbb{C}.
- Does harmonic conjugate v always exist for a given harmonic function u in a domain D ? Answer: 'No'.
- The function $u(x, y)=\log \left(x^{2}+y^{2}\right)^{\frac{1}{2}}$ is harmonic on $G=\mathbb{C} \backslash\{0\}$ and it has no harmonic conjugate on G.
- Question: Under what condition harmonic conjugate v exists for a given harmonic function u in a domain D ?
- Theorem: Let G be either the whole plane \mathbb{C} or some open disk. If $u: G \rightarrow \mathbb{R}$ is a harmonic function then u has a harmonic conjugate in G.

Harmonic Conjugate

- Construction of a harmonic conjugate Let $u(x, y)=x^{2}-y^{2}$. We have to find the harmonic conjugate of u.
- Step 1: Check that u is harmonic: clearly $u_{x x}+u_{y y}=2-2=0$.
- Step 2: Calculate u_{x} and $u_{y}: u_{x}(x, y)=2 x$ and $u_{y}(x, y)=-2 y$. Since the conjugate harmonic function v satisfied CR equations we have

$$
u_{x}(x, y)=v_{y}(x, y)=2 x \Longrightarrow v(x, y)=\int u_{x}(x, y) d y+\phi(x)=2 x y+\phi(x)
$$

- Consider

$$
v_{x}(x, y)=2 y+\phi^{\prime}(x)=-u_{y}(x, y)=2 y \Longrightarrow \phi^{\prime}(x)=0
$$

So $v(x, y)=2 x y+c$, where c is a constant.
So $f(x, y)=u(x, y)+i v(x, y)=x^{2}-y^{2}+2 i x y+i c=z^{2}+i c$ is analytic.

Harmonic conjugate

- Given a harmonic function u. Suppose the harmonic conjugate of u exists. Is it unique?
Ans:Yes, it is unique up to an additive constant.
- Proof. Let v_{1} and v_{2} be two harmonic conjugates of u. Then $f_{1}=u+i v_{1}$ and $f_{2}=u+i v_{2}$ are analytic. Then $f_{1}-f_{2}=i\left(v_{1}-v_{2}\right)$ is analytic. So $v_{1}=C+v_{2}$.
- A function $f(z)=u(x, y)+i v(x, y)$ is analytic if and only if v is the harmonic conjugate of u.

