Differentiability

Differentiability

Recall: Let A be a nonempty open subset of $\mathbb{R} . x_{0} \in A$. Then we say f is differentiable at x_{0} if the limit

exists.

```
nefinition: Let D be a nonempty open subset of C. zov\inD. Then }f\mathrm{ is
    differentiable at }\mp@subsup{z}{0}{}\mathrm{ if the limit
exists. The value of the limit is denoted by f
derivative of }f\mathrm{ at the point }\mp@subsup{z}{0}{
```


Differentiability

Recall: Let A be a nonempty open subset of \mathbb{R}. $x_{0} \in A$. Then we say f is differentiable at x_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists.

Differentiability

Recall: Let A be a nonempty open subset of \mathbb{R}. $x_{0} \in A$. Then we say f is differentiable at x_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists.

- Definition: Let D be a nonempty open subset of $\mathbb{C} . z_{0} \in D$. Then f is differentiable at z_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

exists. The value of the limit is denoted by $f^{\prime}\left(z_{0}\right)$ and is called the derivative of f at the point z_{0}.

Differentiability

Recall: Let A be a nonempty open subset of \mathbb{R}. $x_{0} \in A$. Then we say f is differentiable at x_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists.

- Definition: Let D be a nonempty open subset of $\mathbb{C} . z_{0} \in D$. Then f is differentiable at z_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

exists. The value of the limit is denoted by $f^{\prime}\left(z_{0}\right)$ and is called the derivative of f at the point z_{0}.

- Let $f(z)=z^{2}$. Then $f(z+h)-f(z)=2 z h+h^{2}$ and hence the above limit is $2 z$. In general, $\frac{d}{d z}\left(z^{n}\right)=n z^{n-1}, n \in \mathbb{N}$.

Differentiability

Recall: Let A be a nonempty open subset of \mathbb{R}. $x_{0} \in A$. Then we say f is differentiable at x_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists.

- Definition: Let D be a nonempty open subset of $\mathbb{C} . z_{0} \in D$. Then f is differentiable at z_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

exists. The value of the limit is denoted by $f^{\prime}\left(z_{0}\right)$ and is called the derivative of f at the point z_{0}.

- Let $f(z)=z^{2}$. Then $f(z+h)-f(z)=2 z h+h^{2}$ and hence the above limit is $2 z$. In general, $\frac{d}{d z}\left(z^{n}\right)=n z^{n-1}, n \in \mathbb{N}$.
- If $g(z)=\bar{z}$ then the function g is not differentiable anywhere in \mathbb{C}. As

$$
\lim _{h \rightarrow 0} \frac{g(z+h)-g(z)}{h}=\lim _{h \rightarrow 0} \frac{\bar{h}}{h}
$$

does not exist.

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}.
- Derivative of a constant function is zero.

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}.

Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Suppose $\boldsymbol{f}, \boldsymbol{g}$ be differentiable at z_{0} and $\alpha, \beta \in \mathbb{C}$. Then

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Suppose f, g be differentiable at z_{0} and $\alpha, \beta \in \mathbb{C}$. Then

- $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$.

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Suppose f, g be differentiable at z_{0} and $\alpha, \beta \in \mathbb{C}$. Then

- $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$.
- If $h(z)=f(z) g(z)$, then $h^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Suppose f, g be differentiable at z_{0} and $\alpha, \beta \in \mathbb{C}$. Then

- $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$.
- If $h(z)=f(z) g(z)$, then $h^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$
- If $f(z)=\frac{g(z)}{h(z)}$ and $h\left(z_{0}\right) \neq 0$, then

$$
f^{\prime}\left(z_{0}\right)=\frac{g^{\prime}\left(z_{0}\right) h\left(z_{0}\right)-g\left(z_{0}\right) h^{\prime}\left(z_{0}\right)}{\left[h\left(z_{0}\right)\right]^{2}}
$$

Differentiability

- If f is differentiable at z_{0} then f is continuous at z_{0}. Proof: Since $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ it follows that

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)=f\left(z_{0}\right)
$$

- Derivative of a constant function is zero.

Suppose f, g be differentiable at z_{0} and $\alpha, \beta \in \mathbb{C}$. Then

- $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$.
- If $h(z)=f(z) g(z)$, then $h^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$
- If $f(z)=\frac{g(z)}{h(z)}$ and $h\left(z_{0}\right) \neq 0$, then

$$
f^{\prime}\left(z_{0}\right)=\frac{g^{\prime}\left(z_{0}\right) h\left(z_{0}\right)-g\left(z_{0}\right) h^{\prime}\left(z_{0}\right)}{\left[h\left(z_{0}\right)\right]^{2}}
$$

- (Chain Rule) $\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z)$ whenever all the terms make sense.

Differentiability

Question: Is there any difference between the differentiability in \mathbb{R}^{2} and \mathbb{C} ?

Differentiability

Question: Is there any difference between the differentiability in \mathbb{R}^{2} and \mathbb{C} ?

- Let $f: \mathbb{C} \rightarrow \mathbb{R}$ defined by $f(z)=|z|^{2}$. Consider

$$
\lim _{h \rightarrow 0} \frac{\left|z_{0}+h\right|^{2}-\left|z_{0}\right|^{2}}{h}=\lim _{h \rightarrow 0} \frac{z_{0} \bar{h}+\bar{z}_{0} h+h \bar{h}}{h}=z_{0} \lim _{h \rightarrow 0} \frac{\bar{h}}{h}+\bar{z}_{0}+\bar{h}
$$

The above limit exists if and only if $z_{0}=0$. i.e. the function $f(z)$ is complex differentiable only at 0 .

Differentiability

Question: Is there any difference between the differentiability in \mathbb{R}^{2} and \mathbb{C} ?

- Let $f: \mathbb{C} \rightarrow \mathbb{R}$ defined by $f(z)=|z|^{2}$. Consider

$$
\lim _{h \rightarrow 0} \frac{\left|z_{0}+h\right|^{2}-\left|z_{0}\right|^{2}}{h}=\lim _{h \rightarrow 0} \frac{z_{0} \bar{h}+\bar{z}_{0} h+h \bar{h}}{h}=z_{0} \lim _{h \rightarrow 0} \frac{\bar{h}}{h}+\overline{z_{0}}+\bar{h}
$$

The above limit exists if and only if $z_{0}=0$. i.e. the function $f(z)$ is complex differentiable only at 0 .

- However if we view the same function f as $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ i.e. $f(x, y)=x^{2}+y^{2}$ then f is differentiable everywhere on \mathbb{R}^{2}.

Differentiability

Let D be an open subset of \mathbb{C} and $f: D \rightarrow \mathbb{C}$ such that

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y) .
$$

Let $z_{0}=x_{0}+i y_{0} \in D$ then

Differentiability

Let D be an open subset of \mathbb{C} and $f: D \rightarrow \mathbb{C}$ such that

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y) .
$$

Let $z_{0}=x_{0}+i y_{0} \in D$ then

- $u_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{u\left(x_{0}+h, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{h}$.

Analogously one can define $v_{x}\left(x_{0}, y_{0}\right), v_{y}\left(x_{0}, y_{0}\right)$ and higher order partial

Differentiability

Let D be an open subset of \mathbb{C} and $f: D \rightarrow \mathbb{C}$ such that

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

Let $z_{0}=x_{0}+i y_{0} \in D$ then

- $u_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{u\left(x_{0}+h, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{h}$.
- $u_{y}\left(x_{0}, y_{0}\right)=\lim _{k \rightarrow 0} \frac{u\left(x_{0}, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)}{k}$.

Analogously one can define $v_{x}\left(x_{0}, y_{0}\right), v_{y}\left(x_{0}, y_{0}\right)$ and higher order partial

Differentiability

Let D be an open subset of \mathbb{C} and $f: D \rightarrow \mathbb{C}$ such that

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

Let $z_{0}=x_{0}+i y_{0} \in D$ then

- $u_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{u\left(x_{0}+h, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{h}$.
- $u_{y}\left(x_{0}, y_{0}\right)=\lim _{k \rightarrow 0} \frac{u\left(x_{0}, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)}{k}$.

Analogously one can define $v_{x}\left(x_{0}, y_{0}\right), v_{y}\left(x_{0}, y_{0}\right)$ and higher order partial derivatives of u and v at $\left(x_{0}, y_{0}\right)$.

Necessary condition for Differentiability

Theorem Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$. Then the partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)
$$

Thus equating the real and imaginary parts we get
(Cauchy Riemann equations)

Proof. Since f is differentiable at z_{0} letting $h=h_{1}+i h_{2}$ tending to 0 in two
different paths we get the same limit.

Necessary condition for Differentiability

Theorem Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$. Then the partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)
$$

Thus equating the real and imaginary parts we get

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}, \text { at } z_{0}=x_{0}+i y_{0} \quad \text { (Cauchy Riemann equations). }
$$

Proof. Since f is differentiable at z_{0} letting $h=h_{1}+i h_{2}$ tending to 0 in two
different paths we get the same limit.

Necessary condition for Differentiability

Theorem Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$. Then the partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)
$$

Thus equating the real and imaginary parts we get

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}, \text { at } z_{0}=x_{0}+i y_{0} \quad \text { (Cauchy Riemann equations). }
$$

Proof. Since f is differentiable at z_{0} letting $h=h_{1}+i h_{2}$ tending to 0 in two different paths we get the same limit.

Necessary condition for Differentiability

Theorem Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$. Then the partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)
$$

Thus equating the real and imaginary parts we get

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}, \text { at } z_{0}=x_{0}+i y_{0} \quad \text { (Cauchy Riemann equations). }
$$

Proof. Since f is differentiable at z_{0} letting $h=h_{1}+i h_{2}$ tending to 0 in two different paths we get the same limit.

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{u\left(x_{0}+h_{1}, y_{0}\right)-u\left(x_{0}, y_{0}\right)+i\left[v\left(x_{0}+h_{1}, y_{0}\right)-v\left(x_{0}, y_{0}\right]\right.}{h} \\
& =u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right), \quad\left[h_{1} \rightarrow 0, h_{2}=0\right]
\end{aligned}
$$

Necessary condition for Differentiability

Thus equating the real and imaginary parts of $f^{\prime}\left(z_{0}\right)$ we get

Necessary condition for Differentiability

and

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{u\left(x_{0}, y_{0}+h_{2}\right)-u\left(x_{0}, y_{0}\right)+i\left[v\left(x_{0}, y_{0}+h_{2}\right)-v\left(x_{0}, y_{0}\right)\right]}{i h} \\
& =\lim _{h \rightarrow 0} \frac{v\left(x_{0}, y_{0}+h_{2}\right)-v\left(x_{0}, y_{0}\right)}{h}-i \lim _{h \rightarrow 0} \frac{u\left(x_{0}, y_{0}+h_{2}\right)-u\left(x_{0}, y_{0}\right)}{h} \\
& =v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right) \quad\left[h_{1}=0, h_{2} \rightarrow 0\right]
\end{aligned}
$$

Necessary condition for Differentiability

and

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{u\left(x_{0}, y_{0}+h_{2}\right)-u\left(x_{0}, y_{0}\right)+i\left[v\left(x_{0}, y_{0}+h_{2}\right)-v\left(x_{0}, y_{0}\right)\right]}{i h} \\
& =\lim _{h \rightarrow 0} \frac{v\left(x_{0}, y_{0}+h_{2}\right)-v\left(x_{0}, y_{0}\right)}{h}-i \lim _{h \rightarrow 0} \frac{u\left(x_{0}, y_{0}+h_{2}\right)-u\left(x_{0}, y_{0}\right)}{h} \\
& =v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right) \quad\left[h_{1}=0, h_{2} \rightarrow 0\right] .
\end{aligned}
$$

Thus equating the real and imaginary parts of $f^{\prime}\left(z_{0}\right)$ we get $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right), u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$,
(Cauchy Riemann equations).

Necessary condition for Differentiability

Summary:

- f is differentiable at $z_{0} \Rightarrow$ partial derivatives of u and v exist at the point z_{0} and f satisfies Cauchy Riemann equations.

DOES NOT satisfy Cauchy Riemann equations $\Rightarrow f$ is NOT differentiable at z_{0}

Necessary condition for Differentiability

Summary:

- f is differentiable at $z_{0} \Rightarrow$ partial derivatives of u and v exist at the point z_{0} and f satisfies Cauchy Riemann equations.
- The partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ but f DOES NOT satisfy Cauchy Riemann equations $\Longrightarrow f$ is NOT differentiable at z_{0}. differentiable at z_{0}.

Necessary condition for Differentiability

Summary:

- f is differentiable at $z_{0} \Rightarrow$ partial derivatives of u and v exist at the point z_{0} and f satisfies Cauchy Riemann equations.
- The partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ but f DOES NOT satisfy Cauchy Riemann equations $\Longrightarrow f$ is NOT differentiable at z_{0}.
- Take $f(z)=|z|^{2}$. Let $z_{0}=\left(x_{0}, y_{0}\right) \neq(0,0)$. Here $u(x, y)=x^{2}+y^{2}$ and $V(x, y)=0$. Then

$$
u_{x}\left(x_{0}, y_{0}\right)=2 x_{0}, u_{y}\left(x_{0}, y_{0}\right)=2 y_{0}, v_{x}\left(x_{0}, y_{0}\right)=0=v_{y}\left(x_{0}, y_{0}\right)
$$

f does NOT satisfy Cauchy Riemann equations and hence not differentiable at z_{0}.

Necessary condition for Differentiability

Summary:

- f is differentiable at $z_{0} \Rightarrow$ partial derivatives of u and v exist at the point z_{0} and f satisfies Cauchy Riemann equations.
- The partial derivatives of u and v exist at the point $z_{0}=\left(x_{0}, y_{0}\right)$ but f DOES NOT satisfy Cauchy Riemann equations $\Longrightarrow f$ is NOT differentiable at z_{0}.
- Take $f(z)=|z|^{2}$. Let $z_{0}=\left(x_{0}, y_{0}\right) \neq(0,0)$. Here $u(x, y)=x^{2}+y^{2}$ and $V(x, y)=0$. Then

$$
u_{x}\left(x_{0}, y_{0}\right)=2 x_{0}, u_{y}\left(x_{0}, y_{0}\right)=2 y_{0}, v_{x}\left(x_{0}, y_{0}\right)=0=v_{y}\left(x_{0}, y_{0}\right)
$$

f does NOT satisfy Cauchy Riemann equations and hence not differentiable at z_{0}.

- f satisfies Cauchy Riemann equations at $z_{0} \nRightarrow f$ is differentiable at z_{0}.

Necessary condition for Differentiability

Example: Let

$$
\begin{gathered}
f(z)= \begin{cases}\frac{\bar{z}^{2}}{z} & \text { if } z \neq 0 \\
0 & \text { if } z=0 .\end{cases} \\
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}+i \frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}}\right)-0}{x+i y-0}
\end{gathered}
$$

Let z approach 0 along the x-axis. Then, we have

$$
\lim _{(x, 0) \rightarrow(0,0)} \frac{x-0}{x-0}=1
$$

Let z approach 0 along the line $y=x$. This gives

$$
\lim _{(x, x) \rightarrow(0,0)} \frac{-x-i x}{x+i x}=-1
$$

Since the limits are distinct, we conclude that f is not differentiable at the origin.

Necessary condition for Differentiability

$$
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x-0}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1
$$

In a similar fashion, one can show that

$$
u_{y}(0,0)=0, \quad v_{x}(0,0)=0 \quad \text { and } \quad v_{y}(0,0)=1
$$

Hence the function satisfies the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ at the point $z=0$.
Riemann equation can be obtained as follows:

Necessary condition for Differentiability

$$
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x-0}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1
$$

In a similar fashion, one can show that

$$
u_{y}(0,0)=0, \quad v_{x}(0,0)=0 \quad \text { and } \quad v_{y}(0,0)=1
$$

Hence the function satisfies the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ at the point $z=0$.
Cauchy-Riemann equation in polar form

- Let $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$. The polar form of Cauchy Riemann equation can be obtained as follows:

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

- Result: Let D be a domain in
D, then f is a constant function.

Necessary condition for Differentiability

$$
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x-0}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1
$$

In a similar fashion, one can show that

$$
u_{y}(0,0)=0, \quad v_{x}(0,0)=0 \quad \text { and } \quad v_{y}(0,0)=1
$$

Hence the function satisfies the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ at the point $z=0$.
Cauchy-Riemann equation in polar form

- Let $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$. The polar form of Cauchy Riemann equation can be obtained as follows:

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

- Result: Let D be a domain in \mathbb{C}. If $f: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ is such that $f^{\prime}(z)=0$ for all $z \in D$, then f is a constant function.

Sufficient condition for Differentiability

Theorem Let the function $f=u+i v$ be defined on $B\left(z_{0}, r\right)$ such that $u_{x}, u_{y}, v_{x}, v_{y}$ exist on $B\left(z_{0}, r\right)$ and are continuous at z_{0}. If u and v satisfies $C R$ equations then $f^{\prime}\left(z_{0}\right)$ exist and $f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$.

Sufficient condition for Differentiability

Theorem Let the function $f=u+i v$ be defined on $B\left(z_{0}, r\right)$ such that $u_{x}, u_{y}, v_{x}, v_{y}$ exist on $B\left(z_{0}, r\right)$ and are continuous at z_{0}. If u and v satisfies CR equations then $f^{\prime}\left(z_{0}\right)$ exist and $f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$.
Exercise: Using the above result we can immediately check that the functions
(1) $f(x+i y)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$
(2) $f(x+i y)=e^{-y} \cos x+i e^{-y} \sin x$
are differentiable everywhere in the complex plane.

Sufficient condition for Differentiability

Theorem Let the function $f=u+i v$ be defined on $B\left(z_{0}, r\right)$ such that $u_{x}, u_{y}, v_{x}, v_{y}$ exist on $B\left(z_{0}, r\right)$ and are continuous at z_{0}. If u and v satisfies CR equations then $f^{\prime}\left(z_{0}\right)$ exist and $f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$.
Exercise: Using the above result we can immediately check that the functions
(1) $f(x+i y)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$
(2) $f(x+i y)=e^{-y} \cos x+i e^{-y} \sin x$
are differentiable everywhere in the complex plane.

