Sequence, Limit and Continuity

Lecture 3 Sequence, Limit and Continuity

Functions of a complex variable

- Let S ⊆ C. A complex valued function f is a rule that assigns to each complex number z ∈ S a unique complex number w.
- We write w = f(z). The set S is called the **domain** of f and the set $\{f(z) : z \in S\}$ is called **range** of f.
- For any complex function, the independent variable and the dependent variable can be separated into real and imaginary parts:

$$z = x + iy$$
 and $w = f(z) = u(x, y) + iv(x, y)$,

where $x, y \in \mathbb{R}$ and u(x, y), v(x, y) are **real-valued** functions.

In other words, the components of the function f(z), u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) can be interpreted as real-valued functions of the two real variables x and y.

- 4 同 🕨 - 4 目 🕨 - 4 目

Functions of a complex variable

- Let S ⊆ C. A complex valued function f is a rule that assigns to each complex number z ∈ S a unique complex number w.
- We write w = f(z). The set S is called the **domain** of f and the set $\{f(z) : z \in S\}$ is called range of f.
- For any complex function, the independent variable and the dependent variable can be separated into real and imaginary parts:

$$z = x + iy$$
 and $w = f(z) = u(x, y) + iv(x, y)$,

where $x, y \in \mathbb{R}$ and u(x, y), v(x, y) are **real-valued** functions.

In other words, the components of the function f(z), u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) can be interpreted as real-valued functions of the two real variables x and y.

- 4 同 ト 4 目 ト 4 目 ト

- Let S ⊆ C. A complex valued function f is a rule that assigns to each complex number z ∈ S a unique complex number w.
- We write w = f(z). The set S is called the **domain** of f and the set $\{f(z) : z \in S\}$ is called range of f.
- For any complex function, the independent variable and the dependent variable can be separated into real and imaginary parts:

$$z = x + iy$$
 and $w = f(z) = u(x, y) + iv(x, y)$,

where $x, y \in \mathbb{R}$ and u(x, y), v(x, y) are real-valued functions.

In other words, the components of the function f(z), u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) can be interpreted as real-valued functions of the two real variables x and y.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let S ⊆ C. A complex valued function f is a rule that assigns to each complex number z ∈ S a unique complex number w.
- We write w = f(z). The set S is called the **domain** of f and the set $\{f(z) : z \in S\}$ is called range of f.
- For any complex function, the independent variable and the dependent variable can be separated into real and imaginary parts:

$$z = x + iy$$
 and $w = f(z) = u(x, y) + iv(x, y)$,

where $x, y \in \mathbb{R}$ and u(x, y), v(x, y) are real-valued functions.

In other words, the components of the function f(z), u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) can be interpreted as real-valued functions of the two real variables x and y.

伺 ト く ヨ ト く ヨ ト

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂,...} of complex numbers is said to converge to *l* ∈ C if

$$\lim_{n\to\infty} |z_n - l| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = l.$$

- In other words, $l \in \mathbb{C}$ is called the **limit** of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n l| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a **unique** limit.

< 同 > < 国 > < 国

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂,...} of complex numbers is said to converge to *l* ∈ C if

$$\lim_{n\to\infty} |z_n - I| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = I.$$

- In other words, $I \in \mathbb{C}$ is called the **limit** of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n I| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a **unique** limit.

- (同) - (目) - (目)

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂,...} of complex numbers is said to converge to *I* ∈ C if

$$\lim_{n\to\infty} |z_n - I| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = I.$$

- In other words, $l \in \mathbb{C}$ is called the **limit** of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n l| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a **unique** limit.

| 4 同 1 4 三 1 4 三 1

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂, ...} of complex numbers is said to converge to *l* ∈ C if

$$\lim_{n\to\infty} |z_n - I| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = I.$$

- In other words, $l \in \mathbb{C}$ is called the limit of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n l| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a **unique** limit.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂, ...} of complex numbers is said to converge to *l* ∈ C if

$$\lim_{n\to\infty} |z_n - I| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = I.$$

- In other words, $l \in \mathbb{C}$ is called the limit of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n l| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a unique limit.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers.
- In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- A sequence {z_n} = {z₁, z₂, ...} of complex numbers is said to converge to *l* ∈ C if

$$\lim_{n\to\infty} |z_n - I| = 0 \quad \text{and we write} \quad \lim_{n\to\infty} z_n = I.$$

- In other words, $l \in \mathbb{C}$ is called the limit of a sequence $\{z_n\}$, if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n l| < \epsilon$ whenever $n \ge N_{\epsilon}$.
- If the limit of the sequence exists we say that the sequence is **convergent**; otherwise it is called divergent.
- A convergent sequence has a **unique** limit.

伺 ト く ヨ ト く ヨ ト

• Let $\{z_n\}, \{w_n\}$ be sequences in \mathbb{C} with $\lim_{n \to \infty} z_n = z$ and $\lim_{z_n \to \infty} w_n = w$. Then,

•
$$\lim_{n \to \infty} [z_n \pm w_n] = \lim_{n \to \infty} z_n \pm \lim_{n \to \infty} w_n = z \pm w.$$

•
$$\lim_{n \to \infty} [z_n \cdot w_n] = \lim_{n \to \infty} z_n \cdot \lim_{n \to \infty} w_n = zw.$$

•
$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n} = \frac{z}{w} \quad (\text{if } w \neq 0).$$

•
$$\lim_{n \to \infty} Kz_n = K \lim_{n \to \infty} f(z) = Kz \quad \forall \quad K \in \mathbb{C}.$$

• If $z_n = x_n + iy_n$ and $l = \alpha + i\beta$ then

$$\lim_{n\to\infty} z_n = l \iff \lim_{n\to\infty} x_n = \alpha \quad \text{and} \quad \lim_{n\to\infty} y_n = \beta.$$

イロン イロン イヨン イヨン

э

• Let $\{z_n\}, \{w_n\}$ be sequences in \mathbb{C} with $\lim_{n\to\infty} z_n = z$ and $\lim_{z_n\to\infty} w_n = w$. Then,

•
$$\lim_{n \to \infty} [z_n \pm w_n] = \lim_{n \to \infty} z_n \pm \lim_{n \to \infty} w_n = z \pm w.$$

•
$$\lim_{n \to \infty} [z_n \cdot w_n] = \lim_{n \to \infty} z_n \cdot \lim_{n \to \infty} w_n = zw.$$

•
$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n} = \frac{z}{w} \quad (\text{if } w \neq 0).$$

•
$$\lim_{n \to \infty} Kz_n = K \lim_{n \to \infty} f(z) = Kz \quad \forall \quad K \in \mathbb{C}.$$

• If $z_n = x_n + iy_n$ and $l = \alpha + i\beta$ then

$$\lim_{n\to\infty} z_n = I \iff \lim_{n\to\infty} x_n = \alpha \quad \text{and} \quad \lim_{n\to\infty} y_n = \beta.$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

• Let $\{z_n\}, \{w_n\}$ be sequences in \mathbb{C} with $\lim_{n \to \infty} z_n = z$ and $\lim_{z_n \to \infty} w_n = w$. Then,

•
$$\lim_{n \to \infty} [z_n \pm w_n] = \lim_{n \to \infty} z_n \pm \lim_{n \to \infty} w_n = z \pm w.$$

•
$$\lim_{n \to \infty} [z_n \cdot w_n] = \lim_{n \to \infty} z_n \cdot \lim_{n \to \infty} w_n = zw.$$

•
$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n} = \frac{z}{w} \quad (\text{if } w \neq 0).$$

•
$$\lim_{n \to \infty} Kz_n = K \lim_{n \to \infty} f(z) = Kz \quad \forall \quad K \in \mathbb{C}.$$

• If $z_n = x_n + iy_n$ and $l = \alpha + i\beta$ then

$$\lim_{n\to\infty} z_n = I \iff \lim_{n\to\infty} x_n = \alpha \quad \text{and} \quad \lim_{n\to\infty} y_n = \beta.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• Let $\{z_n\}, \{w_n\}$ be sequences in \mathbb{C} with $\lim_{n\to\infty} z_n = z$ and $\lim_{z_n\to\infty} w_n = w$. Then,

•
$$\lim_{n \to \infty} [z_n \pm w_n] = \lim_{n \to \infty} z_n \pm \lim_{n \to \infty} w_n = z \pm w.$$

•
$$\lim_{n \to \infty} [z_n \cdot w_n] = \lim_{n \to \infty} z_n \cdot \lim_{n \to \infty} w_n = zw.$$

•
$$\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n} = \frac{z}{w} \quad (\text{if } w \neq 0).$$

•
$$\lim_{n \to \infty} Kz_n = K \lim_{n \to \infty} f(z) = Kz \quad \forall \quad K \in \mathbb{C}.$$

• If $z_n = x_n + iy_n$ and $I = \alpha + i\beta$ then

$$\lim_{n\to\infty} z_n = I \iff \lim_{n\to\infty} x_n = \alpha \quad \text{and} \quad \lim_{n\to\infty} y_n = \beta.$$

э

・聞き ・ ヨキ ・ ヨキー

- A sequence $\{z_n\}$ is said to be a **Cauchy Sequence** (or simply **Cauchy**) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a **Cauchy** if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called **subsequence** of z_n .
- A sequence {z_n} is said to be a **bounded** if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a **Cauchy** if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called **subsequence** of z_n .
- A sequence {z_n} is said to be a **bounded** if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

< 日 > < 同 > < 三 > < 三 >

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called **subsequence** of z_n .
- A sequence {z_n} is said to be a **bounded** if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i\cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

イロト イポト イヨト イヨト

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- Theorem: A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called **subsequence** of z_n .
- A sequence {z_n} is said to be a **bounded** if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i\cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

イロト イポト イヨト イヨト

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called **subsequence** of z_n .
- A sequence $\{z_n\}$ is said to be a **bounded** if $\exists k > 0$ such that $|z_n| \le k$ for all n = 1, 2, 3, ...
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called subsequence of z_n .
- A sequence {z_n} is said to be a bounded if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- Example: (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

イロト イポト イヨト イヨト

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called subsequence of z_n .
- A sequence {z_n} is said to be a bounded if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- **Example:** (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

イロン 不同 とくほう イロン

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called subsequence of z_n .
- A sequence {z_n} is said to be a bounded if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- **Example:** (a) $z_n = i^n$, (b) $\cos(n\pi) + i \cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called subsequence of z_n .
- A sequence {z_n} is said to be a bounded if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- **Example:** (a) $z_n = i^n$, (b) $\cos(n\pi) + i\cos(n\pi)$

Every bounded sequence has a convergent subsequence.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- A sequence $\{z_n\}$ is said to be a Cauchy Sequence (or simply Cauchy) if $|z_n z_m| \to 0$ as $n, m \to \infty$.
- In other word, a sequence $\{z_n\}$ is said to be a Cauchy if for every $\epsilon > 0$, there exists a $N_{\epsilon} > 0$ such that $|z_n z_m| < \epsilon$ for all $n, m \ge N_{\epsilon}$.
- **Theorem:** A sequence $\{z_n\}$ in \mathbb{C} is convergent if and only if $\{z_n\}$ is Cauchy.
- Given a sequence $\{z_n\}$, consider a sequence n_k of \mathbb{N} such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence z_{n_k} is called subsequence of z_n .
- A sequence {z_n} is said to be a bounded if ∃ k > 0 such that |z_n| ≤ k for all n = 1, 2, 3,
- Every convergent sequence is **bounded**.
- But every bounded sequence may not converge.
- **Example:** (a) $z_n = i^n$, (b) $\cos(n\pi) + i\cos(n\pi)$
- Every bounded sequence has a convergent subsequence.

Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.

• **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.

- It follows from the definition of limit point that, for each
 n ∈ N there exists a z_n ∈ A such that z_n ∈ B(z, 1/n) \ {a}.
- This implies that $|z_n a| < 1/n \rightarrow 0$.
- This show that there exists an infinite sequence {z_n} in A such that z_n → a.
- Let A be a subset of \mathbb{C} .
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A).
 - A is compact if and only if every sequence has a convergent subsequence.

I ≡ ▶ < </p>

Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.

• **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.

- It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$
- This implies that $|z_n a| < 1/n \rightarrow 0$.
- This show that there exists an infinite sequence {z_n} in A such that z_n → a.
- Let A be a subset of \mathbb{C} .
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A).
 - A is compact if and only if every sequence has a convergent subsequence.

伺 ト イヨト イヨ

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each n ∈ N there exists a z_n ∈ A such that z_n ∈ B(z, 1/n) \ {a}.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence {z_n} in A such that z_n → a.
- Let A be a subset of \mathbb{C} .
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A).
 - A is compact if and only if every sequence has a convergent subsequence.

- 4 同 ト 4 ヨ ト 4 ヨ

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence {z_n} in A such that z_n → a.
- Let A be a subset of C.
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A).
 - A is compact if and only if every sequence has a convergent subsequence.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence {z_n} in A such that z_n → a.
- Let A be a subset of \mathbb{C} .
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A).
 - A is compact if and only if every sequence has a convergent subsequence.

- (同) - (目) - (目)

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each n ∈ N there exists a z_n ∈ A such that z_n ∈ B(z, 1/n) \ {a}.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of C.
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = Ā).
 - A is compact if and only if every sequence has a convergent subsequence.

(人間) (人) (人) (人) (人) (人)

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each n ∈ N there exists a z_n ∈ A such that z_n ∈ B(z, 1/n) \ {a}.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of C.
 - Then z ∈ Ā (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = Ā).
 - A is compact if and only if every sequence has a convergent subsequence.

(4 同) (4 日) (4 日)

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each n ∈ N there exists a z_n ∈ A such that z_n ∈ B(z, 1/n) \ {a}.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of C.
 - Then z ∈ A (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = A
).
 - A is compact if and only if every sequence has a convergent subsequence.

(4 同) (4 日) (4 日)

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of \mathbb{C} .
 - Then z ∈ Ā (closure of A) if and only if exists a sequence {z_n} in A such that z_n → z. In particular, if A is closed then z ∈ A if and only if exists a sequence {z_n} in A such that z_n → z. (In this case A = Ā).
 - A is compact if and only if every sequence has a convergent subsequence.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of \mathbb{C} .
 - Then $z \in \overline{A}$ (closure of A) if and only if exists a sequence $\{z_n\}$ in A such that $z_n \to z$. In particular, if A is closed then $z \in A$ if and only if exists a sequence $\{z_n\}$ in A such that $z_n \to z$. (In this case $A = \overline{A}$).
 - A is compact if and only if every sequence has a convergent subsequence.

同 ト イヨ ト イヨ ト

- Theorem: Let A be a subset of C. If a ∈ A' then there exists an infinite sequence {z_n} in A such that z_n → a.
- **Proof:** Let $a \in A'$, i.e. *a* is a limit point of *A*.
 - It follows from the definition of limit point that, for each $n \in \mathbb{N}$ there exists a $z_n \in A$ such that $z_n \in B(z, 1/n) \setminus \{a\}$.
 - This implies that $|z_n a| < 1/n \rightarrow 0$.
 - This show that there exists an infinite sequence $\{z_n\}$ in A such that $z_n \rightarrow a$.
- Let A be a subset of \mathbb{C} .
 - Then $z \in \overline{A}$ (closure of A) if and only if exists a sequence $\{z_n\}$ in A such that $z_n \to z$. In particular, if A is closed then $z \in A$ if and only if exists a sequence $\{z_n\}$ in A such that $z_n \to z$. (In this case $A = \overline{A}$).
 - A is compact if and only if every sequence has a convergent subsequence.

Limit of a function: Let f be a complex valued function defined at all points z in some deleted neighborhood of z₀. We say that f has a limit l as z → z₀ if for every ε > 0, there is a δ > 0 such that

 $|f(z) - l| < \epsilon$ whenever $|z - z_0| < \delta$ and we write $\lim_{z \to z_0} f(z) = l$.

- If the limit of a function f(z) exists at a point z_0 , it is unique
- If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ then,

 $\lim_{z \to z_0} f(z) = u_0 + iv_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0.$

Note:

The point z₀ can be approached from any direction. If the limit lim f(z) exists, then f(z) must approach a unique limit, no matter how z approaches z₀.

 If the limit lim f(z) is different for different path of approaches then lim f(z) does not exists.

Limit of a function: Let *f* be a complex valued function defined at all points *z* in some deleted neighborhood of *z*₀. We say that *f* has a limit *l* as *z* → *z*₀ if for every *ε* > 0, there is a *δ* > 0 such that

 $|f(z) - l| < \epsilon$ whenever $|z - z_0| < \delta$ and we write $\lim_{z \to z_0} f(z) = l$.

- If the limit of a function f(z) exists at a point z_0 , it is unique.
- If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ then,

 $\lim_{z \to z_0} f(z) = u_0 + iv_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0.$

Note:

 The point z₀ can be approached from any direction. If the limit lim f(z) exists, then f(z) must approach a unique limit, no matter how z approaches z₀.

 If the limit lim f(z) is different for different path of approaches then lim f(z) does not exists.

イロト 不得 トイヨト イヨト 二日

Limit of a function: Let f be a complex valued function defined at all points z in some deleted neighborhood of z₀. We say that f has a limit l as z → z₀ if for every ε > 0, there is a δ > 0 such that

 $|f(z) - l| < \epsilon$ whenever $|z - z_0| < \delta$ and we write $\lim_{z \to z_0} f(z) = l$.

- If the limit of a function f(z) exists at a point z_0 , it is unique.
- If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ then,

$$\lim_{z \to z_0} f(z) = u_0 + iv_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0.$$

Note:

The point z₀ can be approached from any direction. If the limit lim f(z) exists, then f(z) must approach a unique limit, no matter how z approaches z₀.

If the limit lim f(z) is different for different path of approaches then lim f(z) does not exists.

・ロト ・回ト ・ヨト ・ヨト

Limit of a function: Let *f* be a complex valued function defined at all points *z* in some deleted neighborhood of *z*₀. We say that *f* has a limit *l* as *z* → *z*₀ if for every *ε* > 0, there is a *δ* > 0 such that

 $|f(z) - l| < \epsilon$ whenever $|z - z_0| < \delta$ and we write $\lim_{z \to z_0} f(z) = l$.

• If the limit of a function f(z) exists at a point z_0 , it is unique.

• If
$$f(z) = u(x, y) + iv(x, y)$$
 and $z_0 = x_0 + iy_0$ then,

$$\lim_{z \to z_0} f(z) = u_0 + iv_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0.$$

Note:

The point z₀ can be approached from any direction. If the limit lim f(z) exists, then f(z) must approach a unique limit, no matter how z approaches z₀.

• If the limit $\lim_{z \to z_0} f(z)$ is different for different path of approaches then $\lim_{z \to z_0} f(z)$ does not exists.

Limit of a function: Let f be a complex valued function defined at all points z in some deleted neighborhood of z₀. We say that f has a limit l as z → z₀ if for every ε > 0, there is a δ > 0 such that

 $|f(z) - l| < \epsilon$ whenever $|z - z_0| < \delta$ and we write $\lim_{z \to z_0} f(z) = l$.

• If the limit of a function f(z) exists at a point z_0 , it is unique.

• If
$$f(z) = u(x, y) + iv(x, y)$$
 and $z_0 = x_0 + iy_0$ then,

$$\lim_{z \to z_0} f(z) = u_0 + iv_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0.$$

Note:

- The point z₀ can be approached from any direction. If the limit lim f(z) exists, then f(z) must approach a unique limit, no matter how z approaches z₀.
- If the limit $\lim_{z\to z_0} f(z)$ is different for different path of approaches then $\lim_{z\to z_0} f(z)$ does not exists.

Let f, g be complex valued functions with $\lim_{z \to z_0} f(z) = \alpha$ and $\lim_{z \to z_0} g(z) = \beta$. Then,

•
$$\lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = \alpha \pm \frac{1}{2}$$
•
$$\lim_{z \to z_0} [f(z) \cdot g(z)] = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) = \alpha \beta.$$
•
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\alpha}{\beta} \quad (\text{if } \beta \neq 0).$$
•
$$\lim_{z \to z_0} Kf(x) = K \lim_{z \to z_0} f(z) = K\alpha \quad \forall \quad K \in \mathbb{C}.$$

<ロト <部ト < 注ト < 注ト

æ

Let f, g be complex valued functions with $\lim_{z \to z_0} f(z) = \alpha$ and $\lim_{z \to z_0} g(z) = \beta$. Then,

•
$$\lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = \alpha \pm$$

•
$$\lim_{z \to z_0} [f(z) \cdot g(z)] = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) = \alpha\beta.$$

•
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\alpha}{\beta} \quad (\text{if } \beta \neq 0).$$

•
$$\lim_{z \to z_0} Kf(x) = K \lim_{z \to z_0} f(z) = K \alpha \quad \forall \quad K \in \mathbb{C}.$$

æ

Let f, g be complex valued functions with $\lim_{z \to z_0} f(z) = \alpha$ and $\lim_{z \to z_0} g(z) = \beta$. Then,

•
$$\lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = \alpha \pm \beta.$$

•
$$\lim_{z \to z_0} [f(z) \cdot g(z)] = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) = \alpha\beta.$$

•
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\alpha}{\beta} \quad (\text{if} \quad \beta \neq 0).$$

•
$$\lim_{z \to z_0} Kf(x) = K \lim_{z \to z_0} f(z) = K\alpha \quad \forall \quad K \in \mathbb{C}.$$

æ

・聞き ・ ヨキ ・ ヨキー

Continuity at a point: A function f : D → C is continuous at a point z₀ ∈ D if for for every ε > 0, there is a δ > 0 such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

•
$$\lim_{z \to z_0} f(z)$$
 exists,

•
$$\lim_{z\to z_0}f(z)=f(z_0).$$

- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function f is continuous on D if it is continuous at each and every point in D.
- A function f : D → C is continuous at a point z₀ ∈ D if and only if u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) are continuous at z₀.

<ロ> <同> <同> < 同> < 同>

• Continuity at a point: A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if for for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists, • $\lim_{z \to z_0} f(z) = f(z_0).$
- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function f is continuous on D if it is continuous at each and every point in D.
- A function f : D → C is continuous at a point z₀ ∈ D if and only if u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) are continuous at z₀.

・ロト ・同ト ・ヨト ・ヨト

• Continuity at a point: A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if for for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists, • $\lim_{z \to z_0} f(z) = f(z_0).$
- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function *f* is continuous on *D* if it is continuous at each and every point in *D*.
- A function f : D → C is continuous at a point z₀ ∈ D if and only if u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) are continuous at z₀.

< 日 > < 同 > < 三 > < 三 >

• Continuity at a point: A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if for for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists, • $\lim_{z \to z_0} f(z) = f(z_0).$
- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function f is continuous on D if it is continuous at each and every point in D.
- A function $f : D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if and only if u(x, y) = Re(f(z)) and v(x, y) = Im(f(z)) are continuous at z_0 .

- 4 同 6 4 日 6 4 日 6

• Continuity at a point: A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if for for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists, • $\lim_{z \to z_0} f(z) = f(z_0).$
- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function f is continuous on D if it is continuous at each and every point in D.
- A function f : D → C is continuous at a point z₀ ∈ D if and only if u(x, y) = Re (f(z)) and v(x, y) = Im (f(z)) are continuous at z₀.

• Continuity at a point: A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if for for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists, • $\lim_{z \to z_0} f(z) = f(z_0).$
- A function f is continuous at z₀ if and only if for every sequence {z_n} converging to z₀, the sequence {f(z_n)} converges to f(z₀).
- A function f is continuous on D if it is continuous at each and every point in D.
- A function $f : D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if and only if u(x, y) = Re(f(z)) and v(x, y) = Im(f(z)) are continuous at z_0 .

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.
- Continuous image of a compact set (closed and bounded set) is compact.

Let $f, g : D \subseteq \mathbb{C} \to \mathbb{C}$ be continuous functions at the point $z_0 \in D$. Then • $f \pm g$, fg, kf ($k \in \mathbb{C}$), $\frac{f}{g}$ ($g(z_0) \neq 0$) are continuous at z_0 .

• Composition of continuous functions is continuous.

- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.
- Continuous image of a compact set (closed and bounded set) is compact.

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.
- Continuous image of a compact set (closed and bounded set) is compact.

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.
- Continuous image of a compact set (closed and bounded set) is compact.

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.

Continuous image of a compact set (closed and bounded set) is compact.

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\epsilon > 0$ such that $f(z) \neq 0$, $\forall z \in B(z_0, \epsilon)$.
- Continuous image of a compact set (closed and bounded set) is compact.