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Functions of a complex variable

Let S ⊆ C. A complex valued function f is a rule that assigns to each
complex number z ∈ S a unique complex number w .

We write w = f (z). The set S is called the domain of f and the set
{f (z) : z ∈ S} is called range of f .

For any complex function, the independent variable and the dependent
variable can be separated into real and imaginary parts:

z = x + iy and w = f (z) = u(x , y) + iv(x , y),

where x , y ∈ R and u(x , y), v(x , y) are real-valued functions.

In other words, the components of the function f (z), u(x , y) = Re (f (z))
and v(x , y) = Im (f (z)) can be interpreted as real-valued functions of
the two real variables x and y .
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Complex Sequences

Complex Sequences: A complex sequence is a function whose domain
is the set of natural numbers and range is a subset of complex numbers.

In other words, a sequence can be written as f (1), f (2), f (3) . . ..
Usually, we will denote such a sequence by the symbol {zn}, where
zn = f (n).

A sequence {zn} = {z1, z2, . . .} of complex numbers is said to converge
to l ∈ C if

lim
n→∞

|zn − l | = 0 and we write lim
n→∞

zn = l .

In other words, l ∈ C is called the limit of a sequence {zn}, if for every
ε > 0, there exists a Nε > 0 such that |zn − l | < ε whenever n ≥ Nε.

If the limit of the sequence exists we say that the sequence is
convergent; otherwise it is called divergent.

A convergent sequence has a unique limit.
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Algebra of sequence

Let {zn}, {wn} be sequences in C with lim
n→∞

zn = z and lim
zn→∞

wn = w .

Then,

lim
n→∞

[zn ± wn] = lim
n→∞

zn ± lim
n→∞

wn = z ± w .

lim
n→∞

[zn · wn] = lim
n→∞

zn · lim
n→∞

wn = zw .

lim
n→∞

zn
wn

=
lim

n→∞
zn

lim
n→∞

wn
=

z

w
(if w 6= 0).

lim
n→∞

Kzn = K lim
n→∞

f (z) = Kz ∀ K ∈ C.

If zn = xn + iyn and l = α + iβ then

lim
n→∞

zn = l ⇐⇒ lim
n→∞

xn = α and lim
n→∞

yn = β.
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Complex Sequences

A sequence {zn} is said to be a Cauchy Sequence (or simply Cauchy ) if
|zn − zm| → 0 as n,m→∞.
In other word, a sequence {zn} is said to be a Cauchy if for every ε > 0,
there exists a Nε > 0 such that |zn − zm| < ε for all n,m ≥ Nε.

Theorem: A sequence {zn} in C is convergent if and only if {zn} is
Cauchy.

Given a sequence {zn}, consider a sequence nk of N such that
n1 < n2 < n3 < · · · . Then the sequence znk is called subsequence of zn.

A sequence {zn} is said to be a bounded if ∃ k > 0 such that |zn| ≤ k for
all n = 1, 2, 3, . . ..

Every convergent sequence is bounded.

But every bounded sequence may not converge.

Example: (a) zn = in, (b) cos(nπ) + i cos(nπ)

Every bounded sequence has a convergent subsequence.
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Complex Sequences

Theorem: Let A be a subset of C. If a ∈ A′ then there exists an infinite
sequence {zn} in A such that zn → a.

Proof: Let a ∈ A′, i.e. a is a limit point of A.

It follows from the definition of limit point that, for each
n ∈ N there exists a zn ∈ A such that zn ∈ B(z , 1/n) \ {a}.
This implies that |zn − a| < 1/n→ 0.
This show that there exists an infinite sequence {zn} in A such
that zn → a.

Let A be a subset of C.

Then z ∈ Ā (closure of A) if and only if exists a sequence {zn}
in A such that zn → z . In particular, if A is closed then z ∈ A
if and only if exists a sequence {zn} in A such that zn → z . (In
this case A = Ā).
A is compact if and only if every sequence has a convergent
subsequence.
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Then z ∈ Ā (closure of A) if and only if exists a sequence {zn}
in A such that zn → z . In particular, if A is closed then z ∈ A
if and only if exists a sequence {zn} in A such that zn → z . (In
this case A = Ā).
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Limit of a function

Limit of a function: Let f be a complex valued function defined at all
points z in some deleted neighborhood of z0. We say that f has a limit l
as z → z0 if for every ε > 0, there is a δ > 0 such that

|f (z)− l | < ε whenever |z − z0| < δ and we write lim
z→z0

f (z) = l .

If the limit of a function f (z) exists at a point z0, it is unique.

If f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0 then,

lim
z→z0

f (z) = u0+iv0 ⇐⇒ lim
(x,y)→(x0,y0)

u(x , y) = u0 and lim
(x,y)→(x0,y0)

v(x , y) = v0.

Note:

The point z0 can be approached from any direction. If the
limit lim

z→z0
f (z) exists, then f (z) must approach a unique limit,

no matter how z approaches z0.
If the limit lim

z→z0
f (z) is different for different path of

approaches then lim
z→z0

f (z) does not exists.

Lecture 3 Sequence, Limit and Continuity



Limit of a function

Limit of a function: Let f be a complex valued function defined at all
points z in some deleted neighborhood of z0. We say that f has a limit l
as z → z0 if for every ε > 0, there is a δ > 0 such that

|f (z)− l | < ε whenever |z − z0| < δ and we write lim
z→z0

f (z) = l .

If the limit of a function f (z) exists at a point z0, it is unique.

If f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0 then,

lim
z→z0

f (z) = u0+iv0 ⇐⇒ lim
(x,y)→(x0,y0)

u(x , y) = u0 and lim
(x,y)→(x0,y0)

v(x , y) = v0.

Note:

The point z0 can be approached from any direction. If the
limit lim

z→z0
f (z) exists, then f (z) must approach a unique limit,

no matter how z approaches z0.
If the limit lim

z→z0
f (z) is different for different path of

approaches then lim
z→z0

f (z) does not exists.

Lecture 3 Sequence, Limit and Continuity



Limit of a function

Limit of a function: Let f be a complex valued function defined at all
points z in some deleted neighborhood of z0. We say that f has a limit l
as z → z0 if for every ε > 0, there is a δ > 0 such that

|f (z)− l | < ε whenever |z − z0| < δ and we write lim
z→z0

f (z) = l .

If the limit of a function f (z) exists at a point z0, it is unique.

If f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0 then,

lim
z→z0

f (z) = u0+iv0 ⇐⇒ lim
(x,y)→(x0,y0)

u(x , y) = u0 and lim
(x,y)→(x0,y0)

v(x , y) = v0.

Note:

The point z0 can be approached from any direction. If the
limit lim

z→z0
f (z) exists, then f (z) must approach a unique limit,

no matter how z approaches z0.
If the limit lim

z→z0
f (z) is different for different path of

approaches then lim
z→z0

f (z) does not exists.

Lecture 3 Sequence, Limit and Continuity



Limit of a function

Limit of a function: Let f be a complex valued function defined at all
points z in some deleted neighborhood of z0. We say that f has a limit l
as z → z0 if for every ε > 0, there is a δ > 0 such that

|f (z)− l | < ε whenever |z − z0| < δ and we write lim
z→z0

f (z) = l .

If the limit of a function f (z) exists at a point z0, it is unique.

If f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0 then,

lim
z→z0

f (z) = u0+iv0 ⇐⇒ lim
(x,y)→(x0,y0)

u(x , y) = u0 and lim
(x,y)→(x0,y0)

v(x , y) = v0.

Note:

The point z0 can be approached from any direction. If the
limit lim

z→z0
f (z) exists, then f (z) must approach a unique limit,

no matter how z approaches z0.
If the limit lim

z→z0
f (z) is different for different path of

approaches then lim
z→z0

f (z) does not exists.

Lecture 3 Sequence, Limit and Continuity



Limit of a function

Limit of a function: Let f be a complex valued function defined at all
points z in some deleted neighborhood of z0. We say that f has a limit l
as z → z0 if for every ε > 0, there is a δ > 0 such that

|f (z)− l | < ε whenever |z − z0| < δ and we write lim
z→z0

f (z) = l .

If the limit of a function f (z) exists at a point z0, it is unique.

If f (z) = u(x , y) + iv(x , y) and z0 = x0 + iy0 then,

lim
z→z0

f (z) = u0+iv0 ⇐⇒ lim
(x,y)→(x0,y0)

u(x , y) = u0 and lim
(x,y)→(x0,y0)

v(x , y) = v0.

Note:

The point z0 can be approached from any direction. If the
limit lim

z→z0
f (z) exists, then f (z) must approach a unique limit,

no matter how z approaches z0.
If the limit lim

z→z0
f (z) is different for different path of

approaches then lim
z→z0

f (z) does not exists.

Lecture 3 Sequence, Limit and Continuity



Algebra of limit

Let f , g be complex valued functions with lim
z→z0

f (z) = α and lim
z→z0

g(z) = β.

Then,

lim
z→z0

[f (z)± g(z)] = lim
z→z0

f (z)± lim
z→z0

g(z) = α± β.

lim
z→z0

[f (z) · g(z)] = lim
z→z0

f (z) · lim
z→z0

g(z) = αβ.

lim
z→z0

f (z)

g(z)
=

lim
z→z0

f (z)

lim
z→z0

g(z)
=
α

β
(if β 6= 0).

lim
z→z0

Kf (x) = K lim
z→z0

f (z) = Kα ∀ K ∈ C.
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Properties of continuous functions

Continuity at a point: A function f : D → C is continuous at a point
z0 ∈ D if for for every ε > 0, there is a δ > 0 such that

|f (z)− f (z0)| < ε whenever |z − z0| < δ.

In other words, f is continuous at a point z0 if the following conditions

are satisfied.

lim
z→z0

f (z) exists,

lim
z→z0

f (z) = f (z0).

A function f is continuous at z0 if and only if for every sequence {zn}
converging to z0, the sequence {f (zn)} converges to f (z0).

A function f is continuous on D if it is continuous at each and every
point in D.

A function f : D → C is continuous at a point z0 ∈ D if and only if
u(x , y) = Re (f (z)) and v(x , y) = Im (f (z)) are continuous at z0.
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Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity



Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity



Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity



Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity



Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity



Continuity

Let f , g : D ⊆ C→ C be continuous functions at the point z0 ∈ D. Then

f ± g , fg , kf (k ∈ C),
f

g
(g(z0) 6= 0) are continuous at z0.

Composition of continuous functions is continuous.

f (z), |f (z)|,Re (f (z)) and Im (f (z)) are continuous.

If a function f (z) is continuous and nonzero at a point z0, then there is a
ε > 0 such that f (z) 6= 0, ∀ z ∈ B(z0, ε).

Continuous image of a compact set (closed and bounded set) is compact.

Lecture 3 Sequence, Limit and Continuity


