Some Basic Definitions

Interior Points and Open set

- Open ball/disc: Let z₀ ∈ C and r > 0 then, B(z₀, r) = {z ∈ C : |z - z₀| < r} is called an open disc centered at z₀ with radius r.
- Interior point: A point z₀ is called an interior point of a set S ⊂ C if we can find an r > 0 such that B(z₀, r) ⊂ S. We denote set of all interior points of S by S^o.
- Open Set: A set $S \subset \mathbb{C}$ is open if every $z_0 \in S$ there exists r > 0 such that $B(z_0, r) \subset S$.
- Exercise: Show that a set S is an open set if and only if every point of S is an interior point.
- Deleted Neighborhood of z_0 : Let $z_0 \in \mathbb{C}$ and r > 0 then, $B(z_0, r) - \{z_0\} = \{z \in \mathbb{C} : 0 < |z - z_0| < r\}$ is called the deleted neighborhood of z_0 .

• Every open ball is an open set.

• Explanation:

- Let $B(z_0, r_0) = \{z \in \mathbb{C} : |z z_0| < r_0\}$ be an open ball centered at z_0 with radius r_0 .
- To prove B(z₀, r₀) is an open set, we need to show that any z ∈ B(z₀, r₀) ∃,; r > 0 such that B(z, r) ⊂ B(z₀, r₀). That can be done easily.
- If we take $r = \min\{|z_0 z|, r_0 |z_0 z|\}$ then for any $w \in B(z, r)$ we have

$$|z_0 - w| \le |z_0 - z| + |z - w| < r_0.$$

This show that $w \in B(z_0, r_0)$ and hence $B(z, r) \subset B(z_0, r_0)$.

- Similarly we can show that any deleted neighborhood $B(z_0, r) \{z_0\} = \{z \in \mathbb{C} : 0 < |z z_0| < r\}$ is also an open set.
- From above observation it is obvious that every point in the ball B(z₀, r₀) is an interior point of B(z₀, r₀).

Open set (Some Remarks continue....)

- Let A₁, A₂,..., A_k,... be a countable (infinite) collection of open subsets of ℂ.
- If $\bigcup_{k=1}^{\infty} A_k = A$ then A is an open set. Proof is easy.
- If $\bigcap_{k=1}^{\infty} A_k = B$ then B may not be an open set. Why?
- Example: If we take A_k = B(z, 1/k) for k = 1, 2, 3, ... then B = {z}.
 Since a singleton set can not be an open set, therefore B is not an open set
- However if $\bigcap_{k=1}^{n} A_k = A_0$ then A_0 is an open set. How?
- Explanation: If z ∈ A₀ then z ∈ A_k for all k = 1,...n. Since all A_k are open therefore ∃ r_k such that B(z, r_k) ⊂ A_k for all k = 1,...n.
- So if we choose $r = \min\{r_1, \dots, r_n\}$ then $B(z, r) \subset B(z, r_k) \subset A_k$ for all $k = 1, \dots, n$. This implies that $B(z, r) \subset A_0$.

Connected Set and Domain

- Let [z, w] = {(1 − t)z + tw : 0 ≤ t ≤ 1} be the line segment in the complex plane joining the points z and w.
- Connected Set: A set S ⊂ C is said to be connected if each pair of points z₁ and z₂ in S can be joined by a polygonal line consisting of a finite number of line segments joined end to end that lies entirely in S.
- In other words a set S is connected if for each pair of points z_1 and z_2 in S there exists finitely many points w_1, \ldots, w_k such that $[z_1, w_1] \cup [w_1, w_2] \cup \ldots \cup [w_k, z_2] \subset S$.
- Domain/Region: An open, connected set is called a domain.

Closed Disc, Bounded Set and Boundary Points

- Closed disc: Let $z_0 \in \mathbb{C}$ and r > 0 then, $D(z_0, r) = \{z \in \mathbb{C} : |z z_0| \le r\}$ is called a closed disc centered at z_0 with radius r.
- Bounded Set: A set $S \subset \mathbb{C}$ is bounded if there exists a K > 0 such that $|z| < K \ \forall \ z \in S$. We say S is unbounded if S is not bounded.
- Boundary points: If B(z₀, r) contains points of S and points of S^c every r > 0, then z₀ is called a boundary point of a set S. We denote set of all boundary points of S by ∂S.
- Some examples:
 - Set of all boundary points of open disc B(z, r) or closed disc D(z, r) is the circle {w : |z w| = r}.
 - If $S = \{w : |z w| = r\}$ then $\partial S = S$.
 - If S is finite set then $\partial S = S$.
 - If $S = \{1 + i\frac{1}{n} : n \in \mathbb{N}\}$ then $\partial S = S \cup \{1\}$
- Exterior points: If a point is not an interior point or boundary point of *S*, it is an exterior point of *S*.

Limit Points, Closed Set and Compact Set

- Limit point/Accumulation point: Let ζ is called an limit point of a set S ⊂ C if every deleted neighborhood of ζ contains at least one point of S. We denote set of all limit points of S by S'.
- Some examples:
 - Set of all limit points of open disc B(z, r) or closed disc D(z, r) is D(z, r).
 - If S is finite set then $S' = \emptyset$. (why?)

• If
$$S = \{w : |z - w| = r\}$$
 then $S' = S$.

• If
$$S = \{i\frac{1}{n} : n \in \mathbb{N}\}$$
 then $S' = \{0\}$. (why?)

- Closed Set: A set S ⊂ C is closed if S contains all its limit points, i.e. S' ⊂ S.
- Exercise: Show that a set S is closed if and only if S^c is open.

- Closure of a Set: The closure of a set S ⊂ C, denoted by S
 , defined by the set S together with all its limit points. In other words S
 = S' ∪ S.
- Some examples:
 - If S is finite set then $\overline{S} = S$.
 - Closure of open disc B(z, r) or closed disc D(z, r) is D(z, r). If S = {w : |z - w| = r} then S' = S.
 If S = {i¹/_n : n ∈ N} then S̄ = S ∪ {0}
- Exercise: Show that a set S is closed if and only if $\overline{S} = S$.
- Compact Set: A set K ⊂ C is compact if K is a closed and bounded subset of C.
- All closed discs, finite sets, circles are example of compact sets.