MA 201 Complex Analysis

Lecture 18 and 19: Conformal Mapping

The extended complex plane and Riemann Sphere

- Let $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be the unit sphere \mathbb{R}^{3} and let $N=(0,0,1)$ denote the " north pole" of S^{2}.
- Identify \mathbb{C} with $\left\{\left(x_{1}, x_{2}, 0\right): x_{1}, x_{2} \in \mathbb{R}\right\}$ so that \mathbb{C} cuts S^{2} in the equator.
- For each $z \in \mathbb{C}$ consider the straight line in \mathbb{R}^{3} through z and N. This straight line intersects the sphere in exactly one point $Z \neq N$.

The extended plane and its spherical representation

- Question: What happens to Z as $|z| \rightarrow \infty$?
- Answer: The point Z approaches N.
- Hence we identify N with the point ∞ in $\mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}$. Thus the extended complex plane \mathbb{C}_{∞} is represented as the sphere S^{2} is known as Riemann Sphere.
- Let $z=x+i y \in \mathbb{C}$ and let $Z=\left(X_{1}, X_{2}, X_{3}\right)$ be the corresponding point on S^{2}.
- We want to find X_{1}, X_{2} and X_{3} in terms of x and y.
- The parametric equation of straight line in \mathbb{R}^{3} through z and N is given by

$$
\{t N+(1-t) z: t \in \mathbb{R}\} \text { i.e. } \quad\{((1-t) x,(1-t) y, t): t \in \mathbb{R}\}
$$

- Since this line intersects S^{2} at $Z=\left(\left(1-t_{0}\right) x,\left(1-t_{0}\right) y, t_{0}\right)$, we have

$$
1=\left(1-t_{0}\right)^{2} x^{2}+\left(1-t_{0}\right)^{2} y^{2}+t_{0}^{2} \Longrightarrow t_{0}=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} .
$$

- Thus,

$$
X_{1}=\frac{2 x}{x^{2}+y^{2}+1}, \quad X_{2}=\frac{2 y}{x^{2}+y^{2}+1} \text { and } X_{3}=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}
$$

- Now we will write x and y in terms of X_{1}, X_{2} and X_{3}.
- From the last observation that

$$
1-X_{3}=\frac{2}{x^{2}+y^{2}+1}
$$

- Given the point $Z \in S^{2}$ the corresponding point $z=x+i y \in \mathbb{C}$ is

$$
x=\frac{X_{1}}{1-X_{3}} \quad \text { and } \quad y=\frac{X_{2}}{1-X_{3}}
$$

- The correspondence between S^{2} and \mathbb{C}_{∞} defined by

$$
Z=\left(X_{1}, X_{2}, X_{3}\right) \mapsto z=(x+i y)
$$

is called stereographic projection.

Conformal Mapping

Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a smooth curve in a domain D. Let $f(z)$ be a function defined at all points z on γ. Let C denotes the image of γ under the transformation $w=f(z)$. The parametric equation of C is given by $C(t)=w(t)=f(\gamma(t)), t \in[a, b]$.

- Suppose that γ passes through $z_{0}=\gamma\left(t_{0}\right),\left(a<t_{0}<b\right)$ at which f is analytic and $f^{\prime}\left(z_{0}\right) \neq 0$. Then

$$
w^{\prime}\left(t_{0}\right)=f^{\prime}\left(\gamma\left(t_{0}\right)\right) \gamma^{\prime}\left(t_{0}\right)=f^{\prime}\left(z_{0}\right) \gamma^{\prime}\left(t_{0}\right) .
$$

- That means

$$
\arg w^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{0}\right)+\arg \gamma^{\prime}\left(t_{0}\right)
$$

Conformal Mapping

Let $C_{1}, C_{2}:[a, b] \rightarrow \mathbb{C}$ be two smooth curves in a domain D passing through z_{0}. Then by above we have

$$
\arg w_{1}^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{0}\right)+\arg C_{1}^{\prime}\left(t_{0}\right) \text { and } \arg w_{2}^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{0}\right)+\arg C_{2}^{\prime}\left(t_{0}\right)
$$

that means

$$
\arg w_{2}^{\prime}\left(t_{0}\right)-\arg w_{1}^{\prime}\left(t_{0}\right)=\arg C_{2}^{\prime}\left(t_{0}\right)-\arg C_{1}^{\prime}\left(t_{0}\right)
$$

Conformal Mapping

This summarizes as follows

- Theorem:If $f: D \rightarrow \mathbb{C}$ is analytic then f preserves angles at each point z_{0} of D where $f^{\prime}(z) \neq 0$.
- Definition: A map $w=f(z)$ is said to be conformal if it preserves angel between oriented curves in magnitude as well as in orientation.
- if f is analytic and $f^{\prime}(z) \neq 0$ for any z then f is conformal. The converse of this statement is also true.
- Let $f(z)=e^{z}$. Then f is a conformal at every point in \mathbb{C} as $f^{\prime}(z)=f(z)=e^{z} \neq 0$ for each $z \in \mathbb{C}$.
- Let $f(z)=\sin z$. Then f is a conformal map on $\mathbb{C} \backslash\left\{(2 n+1) \frac{\pi}{2}: n \in \mathbb{Z}\right\}$.
- Let $f(z)=\bar{z}$. Then f is not a conformal map as it preserves only the magnitude of the angle between the two smooth curves but not orientation. Such transformations are called isogonal mapping.
- Definition: If f is analytic at z_{0} and $f^{\prime}\left(z_{0}\right)=0$ then the point z_{0} is called a critical point of f.
- The behavior of an analytic function in a neighborhood of critical point is given by the following theorem:
- Theorem: Let f be analytic at z_{0}. If $f^{\prime}\left(z_{0}\right)=\cdots=f^{(k-1)}\left(z_{0}\right)=0$ and $f^{k}\left(z_{0}\right) \neq 0$, then the mapping $w=f(z)$ magnifies the angle at the vertex z_{0} by a factor k.
- Proof. Since f is analytic at z_{0} we have

$$
\begin{aligned}
f(z) & =f\left(z_{0}\right)+\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right)+\frac{1}{2!}\left(z-z_{0}\right)^{2} f^{\prime \prime}\left(z_{0}\right)+\cdots \\
& =f\left(z_{0}\right)+\left(z-z_{0}\right)^{k}\left[\frac{1}{k!} f^{k}\left(z_{0}\right)+\frac{1}{(k+1)!}\left(z-z_{0}\right) f^{k+1}\left(z_{0}\right)+\cdots\right] \\
& =f\left(z_{0}\right)+\left(z-z_{0}\right)^{k} g(z)(\text { say })
\end{aligned}
$$

Scale Factors

- That means

$$
f(z)-f\left(z_{0}\right)=\left(z-z_{0}\right)^{k} g(z)
$$

and

$$
\arg \left(w-w_{0}\right)=\arg \left(f(z)-f\left(z_{0}\right)\right)=k \arg \left(z-z_{0}\right)+\arg g(z) .
$$

- Let C_{1}, C_{2} be two smooth curves passing through z_{0}.
- Let the image curves be $K_{1}=f\left(C_{1}\right)$ and $K_{2}=f\left(C_{2}\right)$.
- If z_{1} is a variable points approaching to z_{0} along C_{1}, then $w_{1}=f\left(z_{1}\right)$ will approach to $w_{0}=f\left(z_{0}\right)$ along the image curves K_{1}.
- Similarly if z_{2} is a variable points approaching to z_{0} along C_{2}, then $w_{2}=f\left(z_{2}\right)$ will approach to $w_{0}=f\left(z_{0}\right)$ along the image curves K_{2}
- Let θ and Φ be the angle between C_{1}, C_{2} at z_{0} and between K_{1}, K_{2} at $f\left(z_{0}\right)$ respectively.

Scale Factors

Then

$$
\begin{aligned}
\Phi & =\lim _{z_{1}, z_{2} \rightarrow z_{0}} \arg \left(\frac{f\left(z_{1}\right)-f\left(z_{0}\right)}{f\left(z_{2}\right)-f\left(z_{0}\right)}\right) \\
& =\lim _{z_{1}, z_{2} \rightarrow z_{0}} \arg \left(\frac{\left(z_{1}-z_{0}\right)^{k} g\left(z_{1}\right)}{\left(z_{2}-z_{0}\right)^{k} g\left(z_{2}\right)}\right) \\
& =\lim _{z_{1}, z_{2} \rightarrow z_{0}}\left[k \arg \frac{z_{1}-z_{0}}{z_{2}-z_{0}}+\arg \frac{g\left(z_{1}\right)}{g\left(z_{2}\right)}\right] \\
& =k \theta .
\end{aligned}
$$

Scale Factors

Question: Find the image of the unit square $S=\{x+i y: 0<x<1,0<y<1\}$ under the map $w=f(z)=z^{2}$?
Answer: The map $f(z)$ is conformal at all $z \neq 0$. So the vertices $z_{1}=1, z_{2}=1+i$ and $z_{3}=i$ are mapped onto right angles at he vertices $w_{1}=1, w_{2}=2 i$ and $w_{3}=i$. But $f^{\prime \prime}(0)=2 \neq 0$. so the angle at the vertex z_{0} is magnified by the factor 2 .

Möbius transformations

If a, b, c and d are complex constants such that $a d-b c \neq 0$, then the function

$$
w=S(z)=\frac{a z+b}{c z+d}
$$

is called a Möbius transformation. It is also known as a bilinear transformation or a linear fractional transformation.
Observation:

- Every Möbius transformation is a conformal map.

$$
S^{\prime}(z)=\frac{(c z+d) a-c(a z+b)}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}} \neq 0
$$

- The map S is analytic on $\mathbb{C} \backslash\left\{-\frac{d}{c}\right\}$.
- Composition of two Möbius transformation is a Möbius transformation.

Möbius transformations

- Define $T(w)=\frac{-d w+b}{c w-a}$ then

$$
S o T(w)=w \text { and } T o S(z)=z
$$

- So S is invertible and $S^{-1}=T$.
- The map $S: \mathbb{C} \backslash\left\{-\frac{d}{c}\right\} \rightarrow \mathbb{C} \backslash\left\{\frac{a}{c}\right\}$ is one one and onto.
- If we define $S\left(-\frac{d}{c}\right)=\infty$ and $S(\infty)=\frac{a}{c}$, then

$$
S: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}
$$

is a bijection.

Möbius transformations

Types of Möbius transformations:

- Let $a \in \mathbb{C}$. Then $S(z)=z+a$ is called translation map.
- Let $0 \neq a \in \mathbb{C}$. Then $S(z)=a z$ is called dilation map. (If $|a|<1, S$ is called contraction map and if $|a|>1, S$ is called expansion map.)
- Let $\theta \in \mathbb{R}$. Then $S(z)=e^{i \theta} z$ is called rotation map.
- The map $S(z)=\frac{1}{z}$ is called inversion map.

Möbius transformations

- Every Möbius transformation is the composition of translations, dilations and the inversion.

Proof.

- Let $w=S(z)=\frac{a z+b}{c z+d}, a d-b c \neq 0$ be a Möbius transformation.

There are two possibilities:

- First, $c=0$ in this case $S(z)=(a / d) z+(b / d)$. So if take

$$
S_{1}(z)=(a / d) z, S_{2}(z)=z+(b / d)
$$

then $S_{2} \circ S_{1}=S$ and we are done.

- Now if $c \neq 0$ in this case we take

$$
S_{1}(z)=z+d / c, S_{2}(z)=1 / z, S_{3}(z)=\frac{b c-a d}{c^{2}} z, S_{4}(z)=z+a / c
$$

Then

$$
S_{4} \circ S_{3} \circ S_{2} \circ S_{1}(z)=\frac{a z+b}{c z+d}=S(z)
$$

Möbius transformations

- A point $z_{0} \in \mathbb{C}_{\infty}$ is called a fixed point of a function f if $f\left(z_{0}\right)=z_{0}$.
- Question: What are the fixed point of a Möbius transformation S? That is what are the point z satisfying $S(z)=z$.
Answer:
- If z satisfies the condition

$$
S(z)=\frac{a z+b}{c z+d}=z
$$

then

$$
c z^{2}-(a-d) z-b=0
$$

- A Möbius transformation can have at most two fixed points unless it is an identity map.
- If $c=0$, then $z=-\frac{b}{a-d}(\infty$ if $a=d)$ is the only fixed point of S.

Möbius transformations

Question: How many Möbius transformation are possible by its action on three distinct points in \mathbb{C}_{∞} ?
Answer: One!
Proof. Let S and T be two Möbius transformations such that

$$
S(a)=T(a)=\alpha, \quad S(b)=T(b)=\beta \quad \text { and } \quad S(c)=T(c)=\gamma
$$

where a, b, c are three distinct points in \mathbb{C}_{∞}. Consider

$$
T^{-1} \circ S(a)=a, T^{-1} \circ S(b)=b \text { and } T^{-1} \circ S(c)=c
$$

So we have a Möbius transformation $T^{-1} \circ S$ having three fixed points. Hence $T^{-1} \circ S=I$. That is $S=T$.
Question: How to find a Möbius transformation if its action on three distinct points in \mathbb{C}_{∞} is given?

Möbius transformations

Definition: Given four distinct points on the $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$, the cross ratio of $z_{1}, z_{2}, z_{3}, z_{4}$ is defined by

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)}
$$

- If $z_{2}=\infty$ then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)}{\left(z_{1}-z_{4}\right)}$
- If $z_{3}=\infty$ then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)}$
- If $z_{4}=\infty$ then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)}{\left(z_{2}-z_{3}\right)}$
- The cross ratio is a Möbius transformation defined by

$$
S(z)=\left(z, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z-z_{4}\right)}
$$

such that $S\left(z_{2}\right)=1, S\left(z_{3}\right)=0$ and $S\left(z_{4}\right)=\infty$.

Möbius transformations

- Let T be any Möbius transformation. Then $S T^{-1}$ is a Möbius transformation such that

$$
S T^{-1}\left(T z_{2}\right)=1, \quad S T^{-1}\left(T z_{3}\right)=0 \text { and } S T^{-1}\left(T z_{4}\right)=\infty
$$

- Since a Möbius transformation is uniquely determined by its action on three distinct points in \mathbb{C}_{∞}.
- So, we have

$$
S T^{-1}(z)=\left(z, T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right)
$$

- In particular $S T^{-1}\left(T\left(z_{1}\right)\right)=S\left(z_{1}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right)$. Above discussion summarizes as:
- Result: If $z_{1}, z_{2}, z_{3}, z_{4}$ are four distinct points in \mathbb{C}_{∞} and T is any Möbius transformation then

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right)
$$

In other words, the cross ratio is invariant under Möbius transformation.

Möbius transformations

Result: If z_{2}, z_{3}, z_{4} are three distinct points in \mathbb{C}_{∞} and if w_{2}, w_{3}, w_{4} are also three distinct points of \mathbb{C}_{∞}, then there is one and only one Möbius transformations S such that $S z_{2}=w_{2}, S z_{3}=w_{3}, S z_{4}=w_{4}$.

Proof

- Let $T(z)=\left(z, z_{2}, z_{3}, z_{4}\right), M(z)=\left(z, w_{2}, w_{3}, w_{4}\right)$ and put $S=M^{-1} \circ T$.
- Clearly S has desire property.
- If R is another Möbius transformations. with $R z_{j}=w_{j}$ for $j=2,3,4$ then $R^{-1} \circ S$ has three fixed poins $\left(z_{2}, z_{3}\right.$ and $\left.z_{4}\right)$.
- Hence $R^{-1} \circ S=I$ or $R=S$.

Möbius transformations

Question: Find a Möbius transformation that maps $z_{1}=1, z_{2}=0, z_{3}=-1$ onto the points $w_{1}=i, w_{2}=\infty, w_{3}=1$.

Answer: We know that

$$
\left(z, z_{1}, z_{2}, z_{3}\right)=\left(T(z), T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right)\right)
$$

i.e.

$$
(z, 1,0,-1)=(T(z), i, \infty, 1)
$$

which on solving gives

$$
T(z)=\frac{(i+1) z+(i-1)}{2 z}
$$

Möbius transformations

Theorem. A Möbius transformation takes circles onto circles.
Proof.

- Recall that every Möbius transformation is the composition of translations, dilations and the inversion.
- It is easy to show that translations, dilations takes circles onto circles.
- To prove this result it is enough to show that the transformation inversion takes circles onto circles.
- Consider the mapping $w=S(z)=\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$.
- If $w=u+i v$ and $z=x+i y$ then

$$
u=\frac{x}{x^{2}+y^{2}} \text { and } v=-\frac{y}{x^{2}+y^{2}}
$$

- Similarly,

$$
x=\frac{u}{u^{2}+v^{2}} \text { and } y=-\frac{v}{u^{2}+v^{2}} .
$$

Möbius transformations

- The general equation of a circle is

$$
\begin{equation*}
a\left(x^{2}+y^{2}\right)+b x+c y+d=0 . \tag{1}
\end{equation*}
$$

- Applying transformation $w=\frac{1}{2}$ (i.e. substituting $x=\frac{u}{u^{2}+v^{2}}$ and $y=-\frac{v}{u^{2}+v^{2}}$) we have

$$
a\left(\left(\frac{u}{u^{2}+v^{2}}\right)^{2}+\left(-\frac{v}{u^{2}+v^{2}}\right)^{2}\right)+b\left(\frac{u}{u^{2}+v^{2}}\right)+c\left(-\frac{v}{u^{2}+v^{2}}\right)+d=0
$$

- Which on simplification becomes

$$
\begin{equation*}
d\left(u^{2}+v^{2}\right)+b u-c v+a=0 \tag{2}
\end{equation*}
$$

Möbius transformations

- Find a Möbius transformation that takes UHP to RHP.
- Find the image of unit disc under the map $w=f(z)=\frac{z}{1-z}$. Ans: $\operatorname{Re} w>-\frac{1}{2}$.
- Find the image of $D=\{z:|z+1|<1\}$ under the map

$$
w=f(z)=\frac{(1-i) z+2}{(1+i) z+2} .
$$

