MA 201 Complex Analysis Lecture 14: Laurent Series and Singularities

Laurent's Series

Suppose that $0 \le r < R$. Let f be an analytic defined on the annulus $A = \operatorname{ann}(a, r, R) = \{z : r < |z - a| < R\}.$

• Then for each $z \in A$, f(z) has the Laurrent series representation

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$$

- where the convergence is absolute and uniform in $\overline{\operatorname{ann}(a, r_1, R_1)}$ if $r < r_1 < R_1 < R$.
- The coefficients are given by

 \sim

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz$$

where $\gamma(t) = a + se^{it}, \ t \in [0, 2\pi]$ and for any r < s < R.

• Moreover, this series is unique and $\sum_{k=-\infty}^{-1} a_n(z-a)^n$ is called (principal

part) and
$$\sum_{k=0}^{\infty} a_n (z-a)^n$$
 is called (regular/analytic part).

Let
$$f(z) = \frac{1}{1-z}$$
.

• On the domain |z| < 1

$$f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \ldots + .$$

• On the domain |z| > 1 i.e. $\frac{1}{|z|} < 1$, by the above mentioned fact we have

$$f(z) = \frac{1}{1-z} = \frac{-1}{z(1-\frac{1}{z})} = -\frac{1}{z}\sum_{n=0}^{\infty}\frac{1}{z^n} = -\frac{1}{z} - \frac{1}{z^2} - \dots$$

Examples of Laurent Series

• Let
$$f(z) = \frac{\sin z}{z}$$
 domain $|z| > 0$
 $f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!} = 1 - \frac{z^2}{6} + \frac{z^4}{120} + \cdots$
• Let $f(z) = \frac{e^z - 1}{z^3}$ domain $|z| > 0$
 $f(z) = \frac{e^z - 1}{z^3} = \frac{1}{z^3} \sum_{1}^{\infty} \frac{z^n}{n!} = \frac{1}{z^2} + \frac{1}{2z} + \frac{1}{6} + \frac{z}{24} + \cdots$
• Let $f(z) = e^{\frac{1}{z}}$ domain $|z| > 0$
 $f(z) = e^{\frac{1}{z}}$ domain $|z| > 0$
 $f(z) = e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots$

Examples of Laurent Series

Let
$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}$$

• Domain $|z| < 1$

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} + \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} (1-2^{-n-1})z^n.$$

• Domain
$$1 < |z| < 2$$
 i.e. $\frac{1}{|z|} < 1$ and $\frac{|z|}{2} < 1$, so we have

$$f(z) = rac{1}{z-2} - rac{1}{z-1} = -\sum_{n=0}^{\infty} rac{z^n}{2^{n+1}} - \sum_{n=1}^{\infty} rac{1}{z^n}.$$

• Domain
$$|z| > 2$$
 i.e. $\frac{1}{|z|} < 1$ and $\frac{2}{|z|} < 1$, in this case we have
$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} - \sum_{n=1}^{\infty} \frac{1}{z^n} = \sum_{n=1}^{\infty} \frac{2^{n-1}-1}{z^n}.$$

Singularities

Behavior of following functions f at 0:

•
$$f(z) = \frac{1}{z^9}$$

• $f(z) = \frac{\sin z}{z}$
• $f(z) = \frac{e^z - 1}{z}$
• $f(z) = \frac{1}{\sin(\frac{1}{z})}$
• $f(z) = \text{Log } z$
• $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.

- **Definition:** The point z_0 is called a singular point or singularity of f
 - **1** if f is not analytic at z_0 but
 - every neighborhood of z₀ contains at least one point at which *f* is analytic.
- Examples: $\frac{e^z 1}{z}$, $\frac{1}{z^2}$, $\sin \frac{1}{z}$, $\log z$ etc. has singularity at z = 0.
- Note: z̄, |z|², Re z, Im z, zRe z are nowhere analytic. That does not mean that every point of C is a singularity.

• A singularities are classified into TWO types:

- A singular point z₀ is said to be an isolated singularity or isolated singular point of f if f is analytic in B(z₀, r) \ {z₀} for some r > 0.
- A singular point z_0 is said to be an **non-isolated singularity** if z_0 is not an isolated singular point.

•
$$\frac{\sin z}{z}$$
, $\frac{1}{z^2}$, $\sin(\frac{1}{z})$ (0 is isolated singular point).

• $\frac{1}{\sin(\pi/z)}$, Log z these functions has non-isolated singularity at 0.

Singularities

If f has an isolated singularity at z_0 , then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some r > 0. In this case f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-a) + a_2(z-z_0)^2 + \cdots$$

- If all $a_{-n} = 0$ for all $n \in \mathbb{N}$, then the point $z = z_0$ is a removal singularity.
- The point z = z₀ is called a pole if all but a finite number of a_{-n}'s are non-zero. If m is the highest integer such that a_{-m} ≠ 0, then z₀ is a Pole of order m.
- If a_{-n} ≠ 0 for infinitely many n's, then the point z = z₀ is a essential singularity.
- The term a_{-1} is called **residue** of f at z_0 .

Removable singularities

- The following statements are equivalent:
 - **1** f has a removable singularity at z_0 .

2 If all
$$a_{-n} = 0$$
 for all $n \in \mathbb{N}$.

$$\lim_{z \to z_0} f(z) \text{ exists and finite.}$$

$$\lim_{z\to z_0}(z-z_0)f(z)=0.$$

(5) f is bounded in a deleted neighborhood of z_0 .

• The function
$$\frac{\sin z}{z}$$
 has removable singularity at 0.

The following statements are equivalent:

1
$$f$$
 has a pole of order m at z_0 .

3
$$f(z)=rac{g(z)}{(z-z_0)^m}$$
, g is analytic at z_0 and $g(z_0)
eq 0$.

3 $\frac{1}{f}$ has a zero of order *m*.

$$\lim_{z\to z_0}|f(z)|=\infty.$$

$$im_{z \to z_0} (z - z_0)^{m+1} f(z) = 0$$

$$\lim_{z \to z_0} (z - z_0)^m f(z)$$
 has removal singularity at z_0 .

Examples:
$$\frac{e^z - 1}{z^8}$$
 has pole of order 7.

Essential singularity

The following statements are equivalent:

- f has a essential singularity at z_0 .
- The point z_0 is neither a pole nor removable singularity.
- $\lim_{z \to z_0} f(z)$ does not exists.
- Infinitely many terms in the principal part of Laurent series expansion around the point *z*₀.

Limit point of zeros is isolated essential singularity. For example:

$$f(z) = \sin\frac{1}{z}$$

Singularities at ∞

Let f be a complex valued function. Define another function g by

$$g(z)=f\left(rac{1}{z}
ight)$$

Then the nature of singularity of f at $z = \infty$ is defined to be the nature of singularity of g at z = 0.

- $f(z) = z^3$ has a pole of order 3 at ∞ .
- e^z has an essential singularity at ∞ .
- An entire function f has a removal singularity at ∞ if and only if f is constant.(Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m.(Prove This!)