MA 201 Complex Analysis

 Lecture 14: Laurent Series and Singularities
Laurent's Series

Suppose that $0 \leq r<R$. Let f be an analytic defined on the annulus

$$
A=\operatorname{ann}(a, r, R)=\{z: r<|z-a|<R\} .
$$

- Then for each $z \in A, f(z)$ has the Laurrent series representation

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n}
$$

- where the convergence is absolute and uniform in $\overline{\operatorname{ann}\left(a, r_{1}, R_{1}\right)}$ if $r<r_{1}<R_{1}<R$.
- The coefficients are given by

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z
$$

where $\gamma(t)=a+s e^{i t}, t \in[0,2 \pi]$ and for any $r<s<R$.

- Moreover, this series is unique and $\sum_{k=-\infty}^{-1} a_{n}(z-a)^{n}$ is called (principal part) and $\sum_{k=0}^{\infty} a_{n}(z-a)^{n}$ is called (regular/analytic part).

Examples of Laurent Series

Let $f(z)=\frac{1}{1-z}$.

- On the domain $|z|<1$

$$
f(z)=\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+\ldots+
$$

- On the domain $|z|>1$ i.e. $\frac{1}{|z|}<1$, by the above mentioned fact we have

$$
f(z)=\frac{1}{1-z}=\frac{-1}{z\left(1-\frac{1}{z}\right)}=-\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}}=-\frac{1}{z}-\frac{1}{z^{2}}-\ldots
$$

Examples of Laurent Series

- Let $f(z)=\frac{\sin z}{z}$ domain $|z|>0$

$$
f(z)=\frac{\sin z}{z}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n+1)!}=1-\frac{z^{2}}{6}+\frac{z^{4}}{120}+\cdots
$$

- Let $f(z)=\frac{e^{z}-1}{z^{3}}$ domain $|z|>0$

$$
f(z)=\frac{e^{z}-1}{z^{3}}=\frac{1}{z^{3}} \sum_{1}^{\infty} \frac{z^{n}}{n!}=\frac{1}{z^{2}}+\frac{1}{2 z}+\frac{1}{6}+\frac{z}{24}+\cdots .
$$

- Let $f(z)=e^{\frac{1}{z}}$ domain $|z|>0$

$$
f(z)=e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots
$$

Examples of Laurent Series

Let $f(z)=\frac{1}{(z-1)(z-2)}=\frac{1}{z-2}-\frac{1}{z-1}$

- Domain $|z|<1$

$$
f(z)=\frac{1}{z-2}-\frac{1}{z-1}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}+\sum_{n=0}^{\infty} z^{n}=\sum_{n=0}^{\infty}\left(1-2^{-n-1}\right) z^{n}
$$

- Domain $1<|z|<2$ i.e. $\frac{1}{|z|}<1$ and $\frac{|z|}{2}<1$, so we have

$$
f(z)=\frac{1}{z-2}-\frac{1}{z-1}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}-\sum_{n=1}^{\infty} \frac{1}{z^{n}}
$$

- Domain $|z|>2$ i.e. $\frac{1}{|z|}<1$ and $\frac{2}{|z|}<1$, in this case we have

$$
f(z)=\frac{1}{z-2}-\frac{1}{z-1}=\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n+1}}-\sum_{n=1}^{\infty} \frac{1}{z^{n}}=\sum_{n=1}^{\infty} \frac{2^{n-1}-1}{z^{n}} .
$$

Singularities

Behavior of following functions f at 0 :

- $f(z)=\frac{1}{z^{9}}$
- $f(z)=\frac{\sin z}{z}$
- $f(z)=\frac{e^{z}-1}{z}$
- $f(z)=\frac{1}{\sin \left(\frac{1}{z}\right)}$
- $f(z)=\log z$
- $f(z)=e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0 , however in every neighborhood of 0 there is a point at which f is analytic.

Singularities

- Definition: The point z_{0} is called a singular point or singularity of f
(1) if f is not analytic at z_{0} but
(2) every neighborhood of z_{0} contains at least one point at which f is analytic.
- Examples: $\frac{e^{z}-1}{z}, \frac{1}{z^{2}}, \sin \frac{1}{z}, \log z$ etc. has singularity at $z=0$.
- Note: $\bar{z},|z|^{2}, \operatorname{Re} z, \operatorname{Im} z, z \operatorname{Re} z$ are nowhere analytic. That does not mean that every point of \mathbb{C} is a singularity.

Singularities

- A singularities are classified into TWO types:
(1) A singular point z_{0} is said to be an isolated singularity or isolated singular point of f if f is analytic in $B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ for some $r>0$.
(2) A singular point z_{0} is said to be an non-isolated singularity if z_{0} is not an isolated singular point.
- $\frac{\sin z}{z}, \frac{1}{z^{2}}, \sin \left(\frac{1}{z}\right)(0$ is isolated singular point $)$.
- $\frac{1}{\sin (\pi / z)}, \log z$ these functions has non-isolated singularity at 0 .

Singularities

If f has an isolated singularity at z_{0}, then f is analytic in $B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ for some $r>0$. In this case f has the following Laurent series expansion:

$$
f(z)=\cdots \frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{a_{-1}}{\left(z-z_{0}\right)}+a_{0}+a_{1}(z-a)+a_{2}\left(z-z_{0}\right)^{2}+\cdots .
$$

- If all $a_{-n}=0$ for all $n \in \mathbb{N}$, then the point $z=z_{0}$ is a removal singularity.
- The point $z=z_{0}$ is called a pole if all but a finite number of a_{-n} 's are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_{0} is a Pole of order m.
- If $a_{-n} \neq 0$ for infinitely many $n^{\prime} s$, then the point $z=z_{0}$ is a essential singularity.
- The term a_{-1} is called residue of f at z_{0}.

Removable singularities

- The following statements are equivalent:
(1) f has a removable singularity at z_{0}.
(2) If all $a_{-n}=0$ for all $n \in \mathbb{N}$.
(3) $\lim _{z \rightarrow z_{0}} f(z)$ exists and finite.
(9) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$.
(5) f is bounded in a deleted neighborhood of z_{0}.
- The function $\frac{\sin z}{z}$ has removable singularity at 0 .

The following statements are equivalent:
(1) f has a pole of order m at z_{0}.
(2) $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}, g$ is analytic at z_{0} and $g\left(z_{0}\right) \neq 0$.
(3) $\frac{1}{f}$ has a zero of order m.
(4) $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$.
(5) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m+1} f(z)=0$
(6) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m} f(z)$ has removal singularity at z_{0}.

Examples: $\frac{e^{z}-1}{z^{8}}$ has pole of order 7.

Essential singularity

The following statements are equivalent:

- f has a essential singularity at z_{0}.
- The point z_{0} is neither a pole nor removable singularity.
- $\lim _{z \rightarrow z_{0}} f(z)$ does not exists.
- Infinitely many terms in the principal part of Laurent series expansion around the point z_{0}.

Limit point of zeros is isolated essential singularity. For example:

$$
f(z)=\sin \frac{1}{z}
$$

Singularities at ∞

Let f be a complex valued function. Define another function g by

$$
g(z)=f\left(\frac{1}{z}\right)
$$

Then the nature of singularity of f at $z=\infty$ is defined to be the the nature of singularity of g at $z=0$.

- $f(z)=z^{3}$ has a pole of order 3 at ∞.
- e^{z} has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m.(Prove This!)

