
MA 201 Complex Analysis
Lecture 13:

Identity Theorem and Maximum Modulus Theorem

Lecture 13 Zeros of analytic functions



Zeros of analytic functions

Suppose that f : D → C is analytic on an open set D ⊂ C.

A point z0 ∈ D is called zero of f if f (z0) = 0.

The z0 is a zero of multiplicity/order m if there is an analytic function
g : D → C such that

f (z) = (z − z0)mg(z), g(z0) 6= 0.

In this case f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 but
f m(z0) 6= 0.
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Zeros of analytic functions

Understanding of multiplicity via Taylor’s series: If f is analytic
function in D, then f has a Taylor series expansion around z0

f (z) =
∞∑
n=0

f n(z0)

n!
(z − z0)n, |z − z0| < R.

If f has a zero of order m at z0 then

f (z) = (z − z0)m
∞∑

n=m

f n(z0)

n!
(z − z0)n−m

Define g(z) =
∑∞

n=m
f n(z0)

n!
(z − z0)n−m, then

f (z) = (z − z0)mg(z).
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Zeros of analytic functions

Zeros of a non-constant analytic function are isolated: If f : D → C is
non-constant and analytic at z0 ∈ D with f (z0) = 0, then there is an R > 0
such that f (z) 6= 0 for z ∈ B(z0,R) \ {z0}.

Proof.

Assume that f has a zero at z0 of order m. Then

f (z) = (z − z0)mg(z)

where g(z) is analytic and g(z0) 6= 0.

Since g is continuous at z0 thus for ε =
|g(z0)|

2
> 0, we can find a δ > 0

such that

|g(z)− g(z0)| < |g(z0)|
2

,

whenever |z − z0| < δ .

Therefore whenever |z − z0| < δ, we have

0 <
|g(z0)|

2
< |g(z)| < 3|g(z0)|

2
. Take R = δ.
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Identity Theorem

Identity Theorem: Let D ⊂ C be a domain and f : D → C is analytic. If there
exists an infinite sequence {zk} ⊂ D, such that f (zk) = 0, ∀k ∈ N and
zk → z0 ∈ D, f (z) = 0 for all z ∈ D.
Proof.

Case I: If D = {z ∈ C : |z − z0| < r} then

f (z) =
∞∑
n=0

an(z − z0)n, for all z ∈ D.

We will show that f n(z0) = 0 for all n. If possible assume that f n(z0) 6= 0
for some n > 0.

Let n0 be the smallest positive integer such that f n0(z0) 6= 0. Then

f (z) =
∞∑

n=n0

an(z − z0)n = (z − z0)n0g(z),

where g(z0) = an0 6= 0.
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Identity Theorem

Since g is continuous at z0, there exist ε > 0 such that g(z) 6= 0 for all
z ∈ B(z0, ε).

There exists some k such that z0 6= zk ∈ B(z0, ε) and f (zk) = 0. This
forces g(zk) = 0 which is a contradiction.

Case II: If D is a domain.

Since z0 ∈ D therefore there exists δ > 0 such that B(z0, δ) ⊂ D.

By Case I, f (z) = 0, ∀ z ∈ B(z0, δ).

Now take z ∈ D join z and z0 by a line segment. Cover the line segments
by open balls in such a way that center of a ball lies in the previous ball.
Apply the above argument to get f (z) = 0 for all z ∈ D.
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Uniqueness Theorem

Uniqueness Theorem: Let D ⊂ C be a domain and f , g : D → C is analytic.
If there exists an infinite sequence {zn} ⊂ D, such that f (zn) = g(zn), ∀n ∈ N
and zn → z0 ∈ D, f (z) = g(z) for all z ∈ D.

Find all entire functions f such that f (r) = 0 for all r ∈ Q.

Find all entire functions f such that f (x) = cos x + i sin x for all
x ∈ (0, 1).

Find all analytic functions f : B(0, 1)→ C such that
f ( 1

n
) = sin( 1

n
), ∀n ∈ N.

There does not exists an analytic function f defined on B(0, 1) such that
f (x) = |x |3 for all x ∈ (−1, 1)?
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Maximum Modulus Theorem

Maximum Modulus Theorem: Let D ⊂ C be a domain and f : D → C is
analytic. If there exists a point z0 ∈ D, such that |f (z)| ≤ |f (z0)|, ∀z ∈ D,
then f is constant on D.
Proof. Choose a r > 0 such that B(z0, r) ⊂ D. Let γ(t) = z0 + re it for
0 ≤ t ≤ 2π. By Cauchy integral formula

f (z0) =
1

2πi

∫
γ

f (z)

z − z0
dz =

1

2π

∫ 2π

0

f (z0 + re it) dt.

Hence

|f (z0)| ≤ 1

2π

∫ 2π

0

|f (z0 + re it)| dt ≤ |f (z0)|.

This gives ∫ 2π

0

[
|f (z0)| − |f (z0 + re it)|

]
dt = 0.

It follows that |f (z0)| = |f (z0 + re it)| for all t. Now f analytic and |f | is

constant gives f is constant on B(z0, r). Applying identity theorem we get f is

constant through out the domain D.
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Consequences of Maximum Modulus Theorem

If f is analytic in a bounded domain D and continuous on ∂D then |f (z)|
attains its maximum at some point on the boundary ∂D.

Define f (z) = ee
z

for z ∈ D = {z ∈ C : |Im z | < π
2
}. Then for

a + ib ∈ ∂D = {ζ ∈ C : |Im ζ| = π
2
},

f (a + ib) =

∣∣∣∣eea±i π
2

∣∣∣∣ =
∣∣∣e±iea

∣∣∣ = 1.

Again if x ∈ R ⊂ D then, f (x) = ee
x

→∞ as x →∞.

Minimum Modulus Theorem Let D ⊂ C be a domain and f : D → C is
analytic. If there exists a point z0 ∈ D, such that |f (z)| ≥ |f (z0)| for all
z ∈ D, then either f is constant function or f (z0) = 0.

Hint. Apply maximum modulus theorem on 1/f .
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