MA 201 Complex Analysis Lecture 13:

Identity Theorem and Maximum Modulus Theorem

Zeros of analytic functions

Suppose that $f: D \rightarrow \mathbb{C}$ is analytic on an open set $D \subset \mathbb{C}$.

Zeros of analytic functions

Suppose that $f: D \rightarrow \mathbb{C}$ is analytic on an open set $D \subset \mathbb{C}$.

- A point $z_{0} \in D$ is called zero of f if $f\left(z_{0}\right)=0$.

Zeros of analytic functions

Suppose that $f: D \rightarrow \mathbb{C}$ is analytic on an open set $D \subset \mathbb{C}$.

- A point $z_{0} \in D$ is called zero of f if $f\left(z_{0}\right)=0$.
- The z_{0} is a zero of multiplicity/order m if there is an analytic function $g: D \rightarrow \mathbb{C}$ such that

$$
f(z)=\left(z-z_{0}\right)^{m} g(z), g\left(z_{0}\right) \neq 0 .
$$

Zeros of analytic functions

Suppose that $f: D \rightarrow \mathbb{C}$ is analytic on an open set $D \subset \mathbb{C}$.

- A point $z_{0} \in D$ is called zero of f if $f\left(z_{0}\right)=0$.
- The z_{0} is a zero of multiplicity/order m if there is an analytic function $g: D \rightarrow \mathbb{C}$ such that

$$
f(z)=\left(z-z_{0}\right)^{m} g(z), g\left(z_{0}\right) \neq 0 .
$$

- In this case $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=f^{\prime \prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)=0$ but $f^{m}\left(z_{0}\right) \neq 0$.

Zeros of analytic functions

- Understanding of multiplicity via Taylor's series: If f is analytic function in D, then f has a Taylor series expansion around z_{0}

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{n}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<R
$$

Zeros of analytic functions

- Understanding of multiplicity via Taylor's series: If f is analytic function in D, then f has a Taylor series expansion around z_{0}

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{n}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<R
$$

- If f has a zero of order m at z_{0} then

$$
f(z)=\left(z-z_{0}\right)^{m} \sum_{n=m}^{\infty} \frac{f^{n}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m}
$$

- Define $g(z)=\sum_{n=m}^{\infty} \frac{f^{n}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m}$, then

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

Zeros of analytic functions

Zeros of a non-constant analytic function are isolated:
\square such that $f(z) \neq 0$ for $z \in B\left(z_{0}, R\right) \backslash\left\{z_{0}\right\}$ Proof.

Zeros of analytic functions

Zeros of a non-constant analytic function are isolated: If $f: D \rightarrow \mathbb{C}$ is non-constant and analytic at $z_{0} \in D$ with $f\left(z_{0}\right)=0$, then there is an $R>0$ such that $f(z) \neq 0$ for $z \in B\left(z_{0}, R\right) \backslash\left\{z_{0}\right\}$.

Proof.

Zeros of analytic functions

Zeros of a non-constant analytic function are isolated: If $f: D \rightarrow \mathbb{C}$ is non-constant and analytic at $z_{0} \in D$ with $f\left(z_{0}\right)=0$, then there is an $R>0$ such that $f(z) \neq 0$ for $z \in B\left(z_{0}, R\right) \backslash\left\{z_{0}\right\}$.

Proof.

- Assume that f has a zero at z_{0} of order m. Then

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

where $g(z)$ is analytic and $g\left(z_{0}\right) \neq 0$.

- Since g is continuous at z_{0} thus for $\epsilon=\frac{\left|g\left(z_{0}\right)\right|}{2}>0$, we can find a $\delta>0$ such that

$$
\left|g(z)-g\left(z_{0}\right)\right|<\frac{\left|g\left(z_{0}\right)\right|}{2}
$$

whenever $\left|z-z_{0}\right|<\delta$.

- Therefore whenever $\left|z-z_{0}\right|<\delta$, we have

$$
0<\frac{\left|g\left(z_{0}\right)\right|}{2}<|g(z)|<\frac{3\left|g\left(z_{0}\right)\right|}{2} . \text { Take } R=\delta
$$

Identity Theorem

Identity Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{k}\right\} \subset D$, such that $f\left(z_{k}\right)=0, \forall k \in \mathbb{N}$ and $z_{k} \rightarrow z_{0} \in D, f(z)=0$ for all $z \in D$.

Identity Theorem

Identity Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{k}\right\} \subset D$, such that $f\left(z_{k}\right)=0, \forall k \in \mathbb{N}$ and $z_{k} \rightarrow z_{0} \in D, f(z)=0$ for all $z \in D$.
Proof.

- Case I: If $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { for all } z \in D
$$

where $g\left(z_{0}\right)=a_{n_{0}} \neq 0$.

Identity Theorem

Identity Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{k}\right\} \subset D$, such that $f\left(z_{k}\right)=0, \forall k \in \mathbb{N}$ and $z_{k} \rightarrow z_{0} \in D, f(z)=0$ for all $z \in D$.
Proof.

- Case I: If $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { for all } z \in D
$$

- We will show that $f^{n}\left(z_{0}\right)=0$ for all n. If possible assume that $f^{n}\left(z_{0}\right) \neq 0$ for some $n>0$.
where $g\left(z_{0}\right)=a_{n_{0}} \neq 0$.

Identity Theorem

Identity Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{k}\right\} \subset D$, such that $f\left(z_{k}\right)=0, \forall k \in \mathbb{N}$ and $z_{k} \rightarrow z_{0} \in D, f(z)=0$ for all $z \in D$.
Proof.

- Case I: If $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { for all } z \in D
$$

- We will show that $f^{n}\left(z_{0}\right)=0$ for all n. If possible assume that $f^{n}\left(z_{0}\right) \neq 0$ for some $n>0$.
- Let n_{0} be the smallest positive integer such that $f^{n_{0}}\left(z_{0}\right) \neq 0$. Then

$$
f(z)=\sum_{n=n_{0}}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{n_{0}} g(z)
$$

where $g\left(z_{0}\right)=a_{n_{0}} \neq 0$.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.

Case II: If D is a domain.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.
- Case II: If D is a domain.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.
- Case II: If D is a domain.
- Since $z_{0} \in D$ therefore there exists $\delta>0$ such that $B\left(z_{0}, \delta\right) \subset D$.

Now take $z \in D$ join z and z_{0} by a line segment. Cover the line segments by open balls in such a way that center of a ball lies in the previous ball. Apply the above argument to get $f(z)=0$ for all $z \in D$.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.
- Case II: If D is a domain.
- Since $z_{0} \in D$ therefore there exists $\delta>0$ such that $B\left(z_{0}, \delta\right) \subset D$.
- By Case I, $f(z)=0, \forall z \in B\left(z_{0}, \delta\right)$.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.
- Case II: If D is a domain.
- Since $z_{0} \in D$ therefore there exists $\delta>0$ such that $B\left(z_{0}, \delta\right) \subset D$.
- By Case I, $f(z)=0, \forall z \in B\left(z_{0}, \delta\right)$.
- Now take $z \in D$ join z and z_{0} by a line segment. Cover the line segments by open balls in such a way that center of a ball lies in the previous ball. Apply the above argument to get $f(z)=0$ for all $z \in D$.

Identity Theorem

- Since g is continuous at z_{0}, there exist $\epsilon>0$ such that $g(z) \neq 0$ for all $z \in B\left(z_{0}, \epsilon\right)$.
- There exists some k such that $z_{0} \neq z_{k} \in B\left(z_{0}, \epsilon\right)$ and $f\left(z_{k}\right)=0$. This forces $g\left(z_{k}\right)=0$ which is a contradiction.
- Case II: If D is a domain.
- Since $z_{0} \in D$ therefore there exists $\delta>0$ such that $B\left(z_{0}, \delta\right) \subset D$.
- By Case I, $f(z)=0, \forall z \in B\left(z_{0}, \delta\right)$.
- Now take $z \in D$ join z and z_{0} by a line segment. Cover the line segments by open balls in such a way that center of a ball lies in the previous ball. Apply the above argument to get $f(z)=0$ for all $z \in D$.

Uniqueness Theorem

Uniqueness Theorem: Let $D \subset \mathbb{C}$ be a domain and $f, g: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{n}\right\} \subset D$, such that $f\left(z_{n}\right)=g\left(z_{n}\right), \forall n \in \mathbb{N}$ and $z_{n} \rightarrow z_{0} \in D, f(z)=g(z)$ for all $z \in D$.

- Find all entire functions f such that $f(r)=0$ for all $r \in Q$.

Uniqueness Theorem

Uniqueness Theorem: Let $D \subset \mathbb{C}$ be a domain and $f, g: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{n}\right\} \subset D$, such that $f\left(z_{n}\right)=g\left(z_{n}\right), \forall n \in \mathbb{N}$ and $z_{n} \rightarrow z_{0} \in D, f(z)=g(z)$ for all $z \in D$.

- Find all entire functions f such that $f(r)=0$ for all $r \in Q$.
- Find all entire functions f such that $f(x)=\cos x+i \sin x$ for all $x \in(0,1)$.

Uniqueness Theorem

Uniqueness Theorem: Let $D \subset \mathbb{C}$ be a domain and $f, g: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{n}\right\} \subset D$, such that $f\left(z_{n}\right)=g\left(z_{n}\right), \forall n \in \mathbb{N}$ and $z_{n} \rightarrow z_{0} \in D, f(z)=g(z)$ for all $z \in D$.

- Find all entire functions f such that $f(r)=0$ for all $r \in Q$.
- Find all entire functions f such that $f(x)=\cos x+i \sin x$ for all $x \in(0,1)$.
- Find all analytic functions $f: B(0,1) \rightarrow \mathbb{C}$ such that $f\left(\frac{1}{n}\right)=\sin \left(\frac{1}{n}\right), \forall n \in \mathbb{N}$.

Uniqueness Theorem

Uniqueness Theorem: Let $D \subset \mathbb{C}$ be a domain and $f, g: D \rightarrow \mathbb{C}$ is analytic. If there exists an infinite sequence $\left\{z_{n}\right\} \subset D$, such that $f\left(z_{n}\right)=g\left(z_{n}\right), \forall n \in \mathbb{N}$ and $z_{n} \rightarrow z_{0} \in D, f(z)=g(z)$ for all $z \in D$.

- Find all entire functions f such that $f(r)=0$ for all $r \in Q$.
- Find all entire functions f such that $f(x)=\cos x+i \sin x$ for all $x \in(0,1)$.
- Find all analytic functions $f: B(0,1) \rightarrow \mathbb{C}$ such that $f\left(\frac{1}{n}\right)=\sin \left(\frac{1}{n}\right), \forall n \in \mathbb{N}$.
- There does not exists an analytic function f defined on $B(0,1)$ such that $f(x)=|x|^{3}$ for all $x \in(-1,1)$?

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.
Proof. Choose a $r>0$ such that $\overline{B\left(z_{0}, r\right)} \subset D$. Let $\gamma(t)=z_{0}+r e^{i t}$ for $0 \leq t \leq 2 \pi$.

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.
Proof. Choose a $r>0$ such that $\overline{B\left(z_{0}, r\right)} \subset D$. Let $\gamma(t)=z_{0}+r e^{i t}$ for $0 \leq t \leq 2 \pi$. By Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

It follows that $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+r e^{i t}\right)\right|$ for all t. Now f analytic and $|f|$ is
constant aives f is constant on $R(70, r)$

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.
Proof. Choose a $r>0$ such that $\overline{B\left(z_{0}, r\right)} \subset D$. Let $\gamma(t)=z_{0}+r e^{i t}$ for $0 \leq t \leq 2 \pi$. By Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

Hence

$$
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i t}\right)\right| d t \leq\left|f\left(z_{0}\right)\right|
$$

It follows that $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+r e^{i t}\right)\right|$ for all t. Now f analytic and
constant rives f is constant on $R(>0, r)$ Anplyincs identity theorem ine get f is
constant through out the domain D.

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.
Proof. Choose a $r>0$ such that $\overline{B\left(z_{0}, r\right)} \subset D$. Let $\gamma(t)=z_{0}+r e^{i t}$ for $0 \leq t \leq 2 \pi$. By Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

Hence

$$
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i t}\right)\right| d t \leq\left|f\left(z_{0}\right)\right|
$$

This gives

$$
\int_{0}^{2 \pi}\left[\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+r e^{i t}\right)\right|\right] d t=0
$$

It follows that $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+r e^{i t}\right)\right|$ for all t. Now f analytic and $|f|$ is constant gives f is constant on $B\left(z_{0}, r\right)$.

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|, \forall z \in D$, then f is constant on D.
Proof. Choose a $r>0$ such that $\overline{B\left(z_{0}, r\right)} \subset D$. Let $\gamma(t)=z_{0}+r e^{i t}$ for $0 \leq t \leq 2 \pi$. By Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
$$

Hence

$$
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i t}\right)\right| d t \leq\left|f\left(z_{0}\right)\right|
$$

This gives

$$
\int_{0}^{2 \pi}\left[\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+r e^{i t}\right)\right|\right] d t=0
$$

It follows that $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+r e^{i t}\right)\right|$ for all t. Now f analytic and $|f|$ is constant gives f is constant on $B\left(z_{0}, r\right)$. Applying identity theorem we get f is constant through out the domain D.

Consequences of Maximum Modulus Theorem

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then $|f(z)|$ attains its maximum at some point on the boundary ∂D.

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then $|f(z)|$ attains its maximum at some point on the boundary ∂D.
- Define $f(z)=e^{e^{2}}$ for $z \in D=\left\{z \in \mathbb{C}:\left||m z|<\frac{\pi}{2}\right\}\right.$.

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then $|f(z)|$ attains its maximum at some point on the boundary ∂D.
- Define $f(z)=e^{e^{z}}$ for $z \in D=\left\{z \in \mathbb{C}:|\operatorname{lm} z|<\frac{\pi}{2}\right\}$. Then for $a+i b \in \partial D=\left\{\zeta \in \mathbb{C}:|\operatorname{lm} \zeta|=\frac{\pi}{2}\right\}$,

$$
f(a+i b)=\left|e^{e^{a \pm i \frac{\pi}{2}}}\right|=\left|e^{ \pm i e^{a}}\right|=1
$$

Again if $x \in \mathbb{R} \subset D$ then, $f(x)=e^{e^{x}} \rightarrow \infty$ as $x \rightarrow \infty$.

Hint. Apply maximum modulus theorem on $1 / f$

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then $|f(z)|$ attains its maximum at some point on the boundary ∂D.
- Define $f(z)=e^{e^{z}}$ for $z \in D=\left\{z \in \mathbb{C}:|\operatorname{lm} z|<\frac{\pi}{2}\right\}$. Then for $a+i b \in \partial D=\left\{\zeta \in \mathbb{C}:|\operatorname{lm} \zeta|=\frac{\pi}{2}\right\}$,

$$
f(a+i b)=\left|e^{e^{a \pm i \frac{\pi}{2}}}\right|=\left|e^{ \pm i e^{a}}\right|=1
$$

Again if $x \in \mathbb{R} \subset D$ then, $f(x)=e^{e^{x}} \rightarrow \infty$ as $x \rightarrow \infty$.

- Minimum Modulus Theorem Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \geq\left|f\left(z_{0}\right)\right|$ for all $z \in D$, then either f is constant function or $f\left(z_{0}\right)=0$.

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then $|f(z)|$ attains its maximum at some point on the boundary ∂D.
- Define $f(z)=e^{e^{z}}$ for $z \in D=\left\{z \in \mathbb{C}:|\operatorname{lm} z|<\frac{\pi}{2}\right\}$. Then for $a+i b \in \partial D=\left\{\zeta \in \mathbb{C}:|\operatorname{lm} \zeta|=\frac{\pi}{2}\right\}$,

$$
f(a+i b)=\left|e^{e^{a \pm i \frac{\pi}{2}}}\right|=\left|e^{ \pm i e^{a}}\right|=1
$$

Again if $x \in \mathbb{R} \subset D$ then, $f(x)=e^{e^{x}} \rightarrow \infty$ as $x \rightarrow \infty$.

- Minimum Modulus Theorem Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ is analytic. If there exists a point $z_{0} \in D$, such that $|f(z)| \geq\left|f\left(z_{0}\right)\right|$ for all $z \in D$, then either f is constant function or $f\left(z_{0}\right)=0$.

Hint. Apply maximum modulus theorem on $1 / f$.

