MA 201 Complex Analysis
 Lecture 12: Taylor's Theorem

- Question: Let $f: B\left(z_{0}, R\right) \rightarrow \mathbb{C}$ analytic. Can we represent f as a power series around z_{0} ?
- Taylor's Theorem: Let f be analytic on $D=B\left(z_{0}, R\right)$. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad \text { for all } z \in D
$$

where $a_{n}=\frac{f^{n}\left(z_{0}\right)}{n!}$ for $n=0,1,2, \ldots$.

- Proof. Without loss of generality we consider $z_{0}=0$. Fix $z \in B\left(z_{0}, R\right)$ and let $|z|=r$. Let C_{0} be a circle with center 0 and radius r_{0} such that $r<r_{0}<R$. Thus for two complex numbers w and z we can write (check!)

$$
\frac{1}{w-z}=\frac{1}{w}+\frac{z}{w^{2}}+\frac{z^{2}}{w^{3}}+\ldots+\frac{z^{n-1}}{w^{n}}+\frac{z^{n}}{(w-z) w^{n}}
$$

- By Cauchy integral formula we now have

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi i} \int_{|w|=r_{0}} \frac{f(w) d w}{w-z} \\
& =\frac{1}{2 \pi i} \int_{|w|=r_{0}} f(w)\left[\frac{1}{w}+\frac{z}{w^{2}}+\ldots+\frac{z^{n-1}}{w^{n}}\right] d w+\frac{z^{n}}{2 \pi i} \int_{|w|=r_{0}} \frac{f(w) d w}{(w-z) w^{n}} \\
& =f(0)+\frac{f^{\prime}(0)}{1!} z+\frac{f^{\prime \prime}(0)}{2!} z^{2}+\ldots .+\frac{f^{n-1}(0)}{(n-1)!} z^{n-1}+\rho_{n}(z) \\
& =\sum_{k=0}^{n-1} \frac{f^{k}(0)}{k!} z^{k}+\rho_{n}(z)
\end{aligned}
$$

where $\rho_{n}(z)=\frac{z^{n}}{2 \pi i} \int_{C_{0}} \frac{f(w) d w}{(w-z) w^{n}}$.

- Now, we just need to show that $\lim _{n \rightarrow \infty}\left|\rho_{n}(z)\right|=0$.
- Note that the function $w \rightarrow \frac{f(w)}{w-z}$ is continuous and hence bounded on the circle C_{0}.
- If $\left|\frac{f(w)}{w-z}\right| \leq K$ for all $w \in C_{0}$ then by $M L$ inequality it follows that

$$
\left|\rho_{n}(z)\right| \leq K r_{0}\left|\frac{z}{r_{0}}\right|^{n}
$$

- Since $|z|=r<r_{0}$ and $|w|=r_{0}$ implies $\lim _{n \rightarrow \infty}\left|\rho_{n}(z)\right|=0$ as $n \rightarrow \infty$.
- Remark: If f is an entire function then

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad \text { for all } z \in \mathbb{C}
$$

where $a_{n}=\frac{f^{n}(0)}{n!}$ for $n=0,1,2, \ldots$.

Exponential function

The power series $\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ has radius of convergence ∞. If we define $f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ then f is an entire function.
(1) $f^{\prime}(z)=\sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}=f(z)$.
(2) We know that $\frac{d}{d z} e^{z}=e^{z}$. Is $f(z)=e^{z}$?
(3) Yes. If $h(z)=\frac{f(z)}{e^{z}}$ then $h^{\prime}(z)=0$ for all $z \in \mathbb{C}$. Therefore $f(z)=c e^{z}$. But $f(0)=e^{0}=1=c$.
Now we will define exponential function as a power series

$$
\exp (z)=e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Sine and Cosine function

The $\sin z$ and $\cos z$ functions can also be written as a power series by using the exponential series.

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}=\frac{1}{2 i}\left[\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(-i z)^{n}}{n!}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!},
$$

similarly,

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}=\frac{1}{2}\left[\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-i z)^{n}}{n!}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} .
$$

Exponential function

Euler's Formula:

$$
\begin{aligned}
e^{i \theta} & =\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left[\frac{1}{(2 n)!}(i \theta)^{2 n}+\frac{1}{(2 n+1)!}(i \theta)^{2 n+1}\right] \\
& =\sum_{n=0}^{\infty}\left[\frac{\theta^{2 n}\left(i^{2}\right)^{n}}{(2 n!)}+i \frac{\theta^{2 n+1}\left(i^{2}\right)^{n}}{(2 n+1)!}\right] \\
& =\cos \theta+i \sin \theta .
\end{aligned}
$$

Polynomial function

- If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots .+a_{0}$ is a polynomial in \mathbb{C} of degree $n \geq 1$ then $|p(z)| \leq M|z|^{n}$ for $|z|>1$.
- Question: Let f is an entire function such that $|f(z)| \leq M|z|^{n}$ for $|z|>1$. Can we say that f is a polynomial of degree at most n ?
- Yes! Since f is an entire function, therefore $f(z)=\sum a_{k} z^{k}$.
- By Cauchy's estimate,

$$
\left|f^{k}(0)\right| \leq \frac{k!M R^{n}}{R^{k}}=\frac{k!M}{R^{(k-n)}} \rightarrow 0
$$

as $R \rightarrow \infty$ for each $k>n$.

- By above observation $a_{k}=0$ for all $k>n$. i.e f is a polynomial of degree at most n.

