MA 201 Complex Analysis Lecture 11: Power Series

Series of complex numbers

If
$$z_n \in \mathbb{C}$$
 for all $n \geq 0$ then the series $\sum_{n=0}^{\infty} z_n$ converges

- to z if for every $\epsilon > 0$ there exists an positive integer N such that $\left| \sum_{n=0}^{m} z_n z \right| < \epsilon \text{ for all } m \ge N$
- **absolutely** if $\sum |z_n|$ converges.
- If the series $\sum z_n$ converges absolutely then $\sum z_n$ converges.

• Let $S_N = \sum_{n=0}^{N} z_n$ be the *N*th partial sum of $\sum z_n$. Then the series $\sum z_n$ converges if and only if the sequence $\{S_N\}$ converges.

- Definition: A series of the form $\sum_{n=0}^{\infty} a_n(z-z_0)^n$, where $a_n \in \mathbb{C}$ and $z_0 \in \mathbb{C}$ is called a power series around the point z_0 .
- For what values of z the following power series converges?

- If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \in \mathbb{C}$ then it converges for all $z \in \mathbb{C}$ such that $|z| < |z_0|$.
- **Proof.** It follows from the hypothesis that there exist $M \ge 0$ such that $|a_n z_0^n| \le M$ for all $n \in \mathbb{N}$.
- Note that

$$|a_n z^n| = |a_n z_0|^n \left| \frac{z}{z_0} \right|^n \leq M \left| \frac{z}{z_0} \right|^n.$$

• The proof now follows from the comparison test, and behavior of geometric series.

- (Radius of convergence)Given a power series $\sum_{n=0}^{\infty} a_n z^n$, there exists $0 < R < \infty$ such that:
 - **1** If |z| < R the series converges absolutely.
 - 2 If |z| > R the series diverges.

The number *R* is called the radius of convergence of a power series.

• a) For
$$\sum_{n=0}^{\infty} n! z^n$$
, $R = 0$. b) For $\sum_{n=0}^{\infty} z^n$, $R = 1$. c) For $\sum_{n=1}^{\infty} \frac{z^n}{n}$, $R = 1$. d)
For $\sum_{n=1}^{\infty} \frac{z^n}{n!}$, $R = \infty$.

• **Remark:** Note that no conclusion about convergence can be drawn if |z| = R. The power series in c) above does not converge if z = 1 but converges if z = -1.

• The formula for calculating R goes exactly as in the case of reals, that is,

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|},$$

whenever the above limits exist (with the supposition that division by ∞ (resp. 0) produces 0 (resp. ∞)).

Let R be the radius of convergence of the power series ∑_{n=0}[∞] a_nzⁿ. Then for all z ∈ B(0, R)

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is a well defined function.

• Question: Is f analytic on B(0, R)?

$$\limsup |a_n|^{1/n} = \limsup |na_n|^{1/n},$$

so that $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z^{n-1}$ have the same radius of convergence.

Now let |z| < r < R, write

$$F(z)=S_N(z)+E_N(z),$$

where

$$S_N(z)=\sum_{n=0}^N a_n z^n$$
 and $E_N(z)=\sum_{n=N+1}^\infty a_n z^n.$

Then if h is chosen so that |z + h| < r we have

$$\begin{array}{ll} \displaystyle \frac{F(z+h)-F(z)}{h}-f(z) & = & \left(\frac{S_N(z+h)-S_N(z)}{h}-S_N'(z)\right) \\ & + & \left(S_N'(z)-f(z)\right)+\left(\frac{E_N(z+h)-E_N(z)}{h}\right). \end{array}$$

Now we will show that all three expression on right in the above equation will go to zero for large N and small h.

Since
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$
, we see that
$$\left|\frac{E_N(z+h) - E_N(z)}{h}\right| \le \sum_{n=N+1}^{\infty} |a_n| \left|\frac{(z-h)^n - z^n}{h}\right| \le \sum_{n=N+1}^{\infty} |a_n| nr^{n-1},$$

where we have used the fact that |z| < r and |z + h| < r. The expression on the right is the tail end of a convergent series. Therefore, given $\epsilon > 0$ we can find N_1 so that $N > N_1$ implies

$$\left|\frac{E_N(z+h)-E_N(z)}{h}\right| < \frac{\epsilon}{3}.$$

Also since $\lim_{N o \infty} S_N'(z) = f(z)$, we can find N_2 so that $N > N_2$ implies that

$$|S'_N(z)-f(z)|<rac{\epsilon}{3}.$$

If we fix N so that both $N > N_1$ and $N > N_2$ hold. Now $S_N(z)$ is a polynomial and the derivative of a polynomial is obtained by differentiating it term by term. Then we can find $\delta > 0$ so that $|h| < \delta$ implies

$$\frac{S_N(z+h)-S_N(z)}{h}-S_N'(z)\bigg|<\frac{\epsilon}{3}.$$

Therefore,

$$\left|\frac{F(z+h)-F(z)}{h}-f(z)\right|<\epsilon$$

whenever $|h| < \delta$.

Corollary: The function $F(z) = \sum_{n=0}^{\infty} a_n z^n$ is infinitely differentiable on B(0, R) and the higher derivatives are also power series obtained by termwise differentiation and has same radius of convergence R.