MA 201 Complex Analysis

Lecture 11: Applications of Cauchy's Integral
Formula

Lecture 10 Applications of Cauchy's Integral Formula



Cauchy's estimate

Cauchy’s estimate: Suppose that f is analytic on a simply connected domain
D and B(zp, R) C D for some R > 0. If |f(z)| < M for all z € C(z, R), then
for all n > 0,
n n'M
|f (ZO)l S Wa

where C(z,R) = {z : |z — 2| = R}.
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Cauchy's estimate

Cauchy’s estimate: Suppose that f is analytic on a simply connected domain
D and B(zp, R) C D for some R > 0. If |f(z)| < M for all z € C(z, R), then
for all n > 0,
n n'M
|f (ZO)l S Wa

where C(z,R) = {z : |z — 2| = R}.

Proof: From Cauchy’s integral formula and ML inequality we have

,, n! f(z)
(2o = —/ ———dz
| ( )‘ 27” |z—z|=R (Z - Zo)n+1
n! 1 n'M
< M—27R = —
= 5 Rnt1 m R
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Liouville's Theorem

Liouville’s Theorem: If f is analytic and bounded on the whole C then f is a
constant function.
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Liouville's Theorem

Liouville’s Theorem: If f is analytic and bounded on the whole C then f is a
constant function.

Proof: By Cauchy's estimate for any zp € C we have,

M
I (20)l < 5

for all R > 0. This implies that f'(z) = 0. Since z is arbitrary and hence
f’ = 0. Therefore f is a constant function.
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Liouville's Theorem

Liouville’s Theorem: If f is analytic and bounded on the whole C then f is a
constant function.

Proof: By Cauchy's estimate for any zp € C we have,

M
I (20)l < 5

for all R > 0. This implies that f'(z) = 0. Since z is arbitrary and hence
f’ = 0. Therefore f is a constant function.

@ sinz,cosz, e’ etc. can not be bounded. If so then by Liouville's theorem
they are constant.
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Liouville's Theorem

Lecture 10 Applications of Cauchy's Integral Formula



Liouville's Theorem

@ Does there exists a non constant entire function f such that e/®) is
bounded?
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Liouville's Theorem

@ Does there exists a non constant entire function f such that e/®) is
bounded?

@ Does there exists a non constant entire function f such that Re(f) is
bounded?
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Liouville's Theorem

@ Does there exists a non constant entire function f such that e/®) is
bounded?

@ Does there exists a non constant entire function f such that Re(f) is
bounded?

@ Does there exists a non constant entire function f such that Im(f) is
bounded?
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Liouville's Theorem

@ Does there exists a non constant entire function f such that e/®) is
bounded?

@ Does there exists a non constant entire function f such that Re(f) is
bounded?

@ Does there exists a non constant entire function f such that Im(f) is
bounded?

@ Does there exists a non constant entire function f such that f(x) is
bounded for all real x?
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Liouville's Theorem

@ Does there exists a non constant entire function f such that e/®) is
bounded?

@ Does there exists a non constant entire function f such that Re(f) is
bounded?

@ Does there exists a non constant entire function f such that Im(f) is
bounded?

@ Does there exists a non constant entire function f such that f(x) is
bounded for all real x?

@ Does there exists a non constant entire function f such that |f(z)| > 1
for all z € C?
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Fundamental Theorem of Algebra

@ Fundamental Theorem of Algebra: Every polynomial p(z) of degree
n>1 has a root in C.
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Fundamental Theorem of Algebra

@ Fundamental Theorem of Algebra: Every polynomial p(z) of degree
n>1 has a root in C.

@ Proof: Suppose P(z) = z" + ap—1z"" " + .... + a9 is a polynomial with no
root in C. Then ﬁ is an entire function.

@ Since

dn—1 do
= :‘1—&—74—...4—; —1, as; |z| = oo,

‘ P(2)

@ It follows that |p(z)| — oo and hence [1/p(z)| — 0 as |z| — oo.

@ Consequently ﬁ is a bounded function.

@ Hence by Liouville's theorem % is constant which is impossible.
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Morera's Theorem

Morera’s Theorem: If f is continuous in a simply connected domain D and if

/c f(z)dz=0

for every simple closed contour C in D then f is analytic.
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Morera's Theorem

Morera’s Theorem: If f is continuous in a simply connected domain D and if

/c f(z)dz=0

for every simple closed contour C in D then f is analytic.

Proof: Fix a point zp € D and define
F(z) = / F(w)dw.
20

Use the idea of proof of existence of antiderivative to show that F' = f. Now

by Cauchy integral formula f is analytic.
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