MA 201 Complex Analysis

Lecture 11: Applications of Cauchy's Integral Formula

Cauchy's estimate

Cauchy's estimate: Suppose that f is analytic on a simply connected domain D and $B\left(z_{0}, R\right) \subset D$ for some $R>0$. If $|f(z)| \leq M$ for all $z \in C\left(z_{0}, R\right)$, then for all $n \geq 0$,

$$
\left|f^{n}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}},
$$

where $C\left(z_{0}, R\right)=\left\{z:\left|z-z_{0}\right|=R\right\}$.

Proof: From Cauchy's integral formula and $M L$ inequality we have

Cauchy's estimate

Cauchy's estimate: Suppose that f is analytic on a simply connected domain D and $\overline{B\left(z_{0}, R\right)} \subset D$ for some $R>0$. If $|f(z)| \leq M$ for all $z \in C\left(z_{0}, R\right)$, then for all $n \geq 0$,

$$
\left|f^{n}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}},
$$

where $C\left(z_{0}, R\right)=\left\{z:\left|z-z_{0}\right|=R\right\}$.
Proof: From Cauchy's integral formula and $M L$ inequality we have

$$
\begin{aligned}
\left|f^{n}\left(z_{0}\right)\right| & =\left|\frac{n!}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \\
& \leq \frac{n!}{2 \pi} M \frac{1}{R^{n+1}} 2 \pi R=\frac{n!M}{R^{n}} .
\end{aligned}
$$

Liouville's Theorem

Liouville's Theorem: If f is analytic and bounded on the whole \mathbb{C} then f is a constant function.

Proof: By Cauchy's estimate for any $z_{0} \in \mathbb{C}$ we have, for all $R>0$. This implies that $f^{\prime}\left(z_{0}\right)=0$. Since z_{0} is arbitrary and hence
$f^{\prime} \equiv 0$. Therefore f is a constant function.

Liouville's Theorem

Liouville's Theorem: If f is analytic and bounded on the whole \mathbb{C} then f is a constant function.

Proof: By Cauchy's estimate for any $z_{0} \in \mathbb{C}$ we have,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R}
$$

for all $R>0$. This implies that $f^{\prime}\left(z_{0}\right)=0$. Since z_{0} is arbitrary and hence $f^{\prime} \equiv 0$. Therefore f is a constant function.

Liouville's Theorem

Liouville's Theorem: If f is analytic and bounded on the whole \mathbb{C} then f is a constant function.

Proof: By Cauchy's estimate for any $z_{0} \in \mathbb{C}$ we have,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R}
$$

for all $R>0$. This implies that $f^{\prime}\left(z_{0}\right)=0$. Since z_{0} is arbitrary and hence $f^{\prime} \equiv 0$. Therefore f is a constant function.

- $\sin z, \cos z, e^{z}$ etc. can not be bounded. If so then by Liouville's theorem they are constant.

Liouville's Theorem

Liouville's Theorem

- Does there exists a non constant entire function f such that $e^{f(z)}$ is bounded?

Liouville's Theorem

- Does there exists a non constant entire function f such that $e^{f(z)}$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Re}(f)$ is bounded?

Liouville's Theorem

- Does there exists a non constant entire function f such that $e^{f(z)}$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Re}(f)$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Im}(f)$ is bounded?
- Does there exists a non constant entire function f such that $f(x)$ is bounded for all real x ?

Liouville's Theorem

- Does there exists a non constant entire function f such that $e^{f(z)}$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Re}(f)$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Im}(f)$ is bounded?
- Does there exists a non constant entire function f such that $f(x)$ is bounded for all real x ?

Liouville's Theorem

- Does there exists a non constant entire function f such that $e^{f(z)}$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Re}(f)$ is bounded?
- Does there exists a non constant entire function f such that $\operatorname{Im}(f)$ is bounded?
- Does there exists a non constant entire function f such that $f(x)$ is bounded for all real x ?
- Does there exists a non constant entire function f such that $|f(z)|>1$ for all $z \in \mathbb{C}$?

Fundamental Theorem of Algebra

- Fundamental Theorem of Algebra: Every polynomial $p(z)$ of degree $n \geq 1$ has a root in \mathbb{C}.

[^0]- Fundamental Theorem of Algebra: Every polynomial $p(z)$ of degree $n \geq 1$ has a root in \mathbb{C}.
- Proof: Suppose $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots .+a_{0}$ is a polynomial with no root in \mathbb{C}. Then $\frac{1}{P(z)}$ is an entire function.
- Since

$$
\left|\frac{P(z)}{z^{n}}\right|=\left|1+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right| \rightarrow 1, \quad \text { as } ; \quad|z| \rightarrow \infty
$$

- It follows that $|p(z)| \rightarrow \infty$ and hence $|1 / p(z)| \rightarrow 0$ as $|z| \rightarrow \infty$.
- Consequently $\frac{1}{p(z)}$ is a bounded function.
- Hence by Liouville's theorem $\frac{1}{p(z)}$ is constant which is impossible.

Morera's Theorem

Morera's Theorem: If f is continuous in a simply connected domain D and if

$$
\int_{C} f(z) d z=0
$$

for every simple closed contour C in D then f is analytic.
Proof: Fix a point $z_{0} \in D$ and define

Use the idea of proof of existence of antiderivative to show that $F^{\prime}=f$. Now by Cauchv integral formula f is analvtic.

Morera's Theorem

Morera's Theorem: If f is continuous in a simply connected domain D and if

$$
\int_{C} f(z) d z=0
$$

for every simple closed contour C in D then f is analytic.
Proof: Fix a point $z_{0} \in D$ and define

$$
F(z)=\int_{z_{0}}^{z} f(w) d w .
$$

Use the idea of proof of existence of antiderivative to show that $F^{\prime}=f$. Now by Cauchy integral formula f is analytic.

[^0]: - Consequently $\frac{1}{p(z)}$ is a bounded function

