Elementary properties of Complex numbers

Application of Complex Analysis

- Why do we need Complex Analysis?
- Evaluation of certain integrals which are difficult to workout. Viz.

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

- Fourier Analysis.
- Differential Equations.
- Number Theory.
- All major branches of Mathematics which is applicable in science and engineering.

Introduction

- Let us consider the quadratic equation $x^{2}+1=0$.
- It has no real root.
- Let i (iota) be the solution of the above equation, then
- $i^{2}=-1$ i.e. $i=\sqrt{-1}$.
- i is not a real number. So we define it as imaginary number.
- A complex number is defined by $z=x+i y$, for any $x, y \in \mathbb{R}$.
- Complex analysis is theory of functions of complex numbers.

Complex Numbers

- A complex number denoted by z is an ordered pair (x, y) with $x \in \mathbb{R}$, $y \in \mathbb{R}$.
- x is called real part of z and y is called the imaginary part of z. In symbol $x=\operatorname{Re} z$, and $y=\operatorname{Im} z$.
- We denote $i=(0,1)$ and hence $z=x+i y$ where the element x is identified with $(x, 0)$.
- $\operatorname{Re} z=\operatorname{Im} i z$ and $\operatorname{Im} z=-\operatorname{Re} i z$.
- By \mathbb{C} we denote the set of all complex numbers, that is, $\mathbb{C}=\{z: z=x+i y, x \in \mathbb{R}, y \in \mathbb{R}\}$.

Algebra of Complex Numbers

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers.

- Addition and subtraction: We define

$$
z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)
$$

- Multiplication: We define

$$
z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

Since $i=(0,1)$ it follows from above that $i^{2}=-1$.

- Division: If z a nonzero complex number then we define

$$
\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}
$$

From this we get

$$
\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}
$$

Basic algebraic properties of Complex Numbers

Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.

- Commutative and associative law for addition : $z_{1}+z_{2}=z_{2}+z_{1}$. and $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$.
- Additive identity : $z+0=0+z=z \forall z \in \mathbb{C}$
- Additive inverse : For every $z \in \mathbb{C}$ there exists $-z \in \mathbb{C}$ such that $z+(-z)=0=(-z)+z$.
- Commutative and associative law for multiplication : $z_{1} z_{2}=z_{2} z_{1}$. and $z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3}$.
- Multiplicative identity : $z \cdot 1=z=1 \cdot z \forall z \in \mathbb{C}$
- Multiplicative inverse : For every nonzero $z \in \mathbb{C}$ there exists $w\left(=\frac{1}{z}\right) \in \mathbb{C}$ such that $z w=1=w z$.
- Distributive law : $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

Note: \mathbb{C} is a field.

Conjugate of a Complex Number

If $z=x+i y$ is a complex number then its conjugate is defined by $\bar{z}=x-i y$. Conjugation has the following properties which follows easily from the definition. Let $z_{1}, z_{2} \in \mathbb{C}$ then,

- $\operatorname{Re} z=\frac{1}{2}(z+\bar{z})$ and $\operatorname{Im} z=\frac{1}{2 i}(z-\bar{z})$.
- $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.
- $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
- Note: If $\alpha \in \mathbb{R}$ then $\overline{\alpha z}=\alpha \bar{z})$.
- $\overline{\bar{z}}=z$
- $\operatorname{Re} z=\operatorname{Re} \bar{z}$ and $\operatorname{Im} z=-\operatorname{Im} \bar{z}$.

Modulus of a Complex Number

The modulus or absolute value of a complex number $z=x+i y$ is a non negative real number denoted by $|z|$ and defined by

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

Note that if $z=x+i y$ then $|z|$ is the Euclidean distance of the point (x, y) from the origin $(0,0)$.
Exercise: Verify the following properties.

- $z \bar{z}=|z|^{2}$.
- $|x|=|\operatorname{Re} z| \leq|z|$ and $|y|=|\operatorname{lm} z| \leq|z|$
- $|\bar{z}|=|z|,\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ and $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(z_{2} \neq 0\right)$.
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ (Triangle inequality).
- $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$

Graphical representation of Complex Numbers

Graphical representation of Complex Numbers

- We can represent the complex number $z=x+i y$ by a position vector in the $X Y$-plane whose tail is at the origin and head is at the point (x, y).
- When $X Y$-plane is used for displaying complex numbers, it is called Argand plane or Complex plane or z plane.
- The X-axis is called as the real axis where as the Y-axis is called as the imaginary axis.

Graphical representation of Complex Numbers

Graph the complex

numbers:

1. $3+4 i$
2. 2-3i
(2,-3)
3. $-4+2 i \quad(-4,2)$
4. 3 (which is really $3+0 i)(3,0)$
5. $\mathbf{4 i}$ (which is really $0+4 \boldsymbol{i})(0,4)$

The complex number is represented by the point or by the vector from the origin to the point.

Graphical representation of Complex Numbers

Add $3+4 i$ and $-4+2 i$ graphically.

Graph the two complex numbers $3+4 i$ and $-4+$ $2 i$ as vectors.

Create a parallelogram using these two vectors as adjacent sides.

The sum of $3+4 i$ and -4 $+2 i$ is represented by the diagonal of the parallelogram (read from the origin).

This new (diagonal) vector is called the resultant vector.

Graphical representation of Complex Numbers

Subtract $3+4 i$ from $-2+2 i$
Subtraction is the process of adding the additive inverse.

$$
\begin{gathered}
(-2+2 i)-(3+4 i) \\
=(-2+2 i)+(-3-4 i) \\
=(-5-2 i)
\end{gathered}
$$

Graph the two complex numbers as vectors.

Graph the additive inverse of the number being subtracted.

Create a parallelogram using the first number and the additive inverse. The answer is the vector forming the diagonal of the
 parallelogram.

- Consider the unit circle on the complex plane. Any point on the unit circle is represented by $(\cos \varphi, \sin \varphi), \varphi \in[0,2 \pi]$.
- Any non zero $z \in \mathbb{C}$, the point $\frac{z}{|z|}$ lies on the unit circle and therefore we write $\frac{z}{|z|}=\cos \varphi+i \sin \varphi$. i.e. $z=|z|(\cos \varphi+i \sin \varphi)$.
- The symbol $e^{i \varphi}$ is defined by means of Euler's formula as

$$
e^{i \varphi}=\cos \varphi+i \sin \varphi
$$

- Note that $e^{i 2 n \pi}=1$ for any integer n.

Polar representation of Complex Numbers

- Any non $z=x+i y$ can be uniquely specified by its magnitude(length from origin) and direction(the angle it makes with positive X-axis).
- Let $r=|z|=\sqrt{x^{2}+y^{2}}$ and θ be the angle made by the line from origin to the point (x, y) with the positive X-axis.
- From the above figure $x=r \cos \theta, y=r \sin \theta$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$.

Polar representation of a Complex Number

- If $z \neq 0$ then $\arg (z)=\left\{\theta: z=|z| e^{i \theta}\right\}$.
- Note that $\arg (z)$ is a multi-valued function.

$$
\arg (z)=\left\{\theta+2 n \pi: z=r e^{i \theta}, n \in \mathbb{Z}\right\}
$$

- For any given $z \neq 0$ there exists a unique $\theta \in(-\pi, \pi]$ such that $z=|z| e^{i \theta}$. This θ is called principal value of $\arg (z)$, denoted by $\operatorname{Arg}(z)$
- For example, arg $i=2 k \pi+\frac{\pi}{2}, k \in \mathbb{Z}$, where as $\operatorname{Arg} i=\frac{\pi}{2}$.
- Let $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$ then $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$.
- If $z_{1} \neq 0$ and $z_{2} \neq 0, \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$.
- As $\left|e^{i \theta}\right|=1, \forall \theta \in \mathbb{R}$, it follows that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.

De Moiver's formula

- De Moivre's formula:

$$
z^{n}=[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

- Problem: Given a nonzero complex number z_{0} and a natural number $n \in \mathbb{N}$. Find all distinct complex numbers w such that $z_{0}=w^{n}$.
- If w satisfies the above then $|w|=\left|z_{0}\right|^{\frac{1}{n}}$. So, if $z_{0}=\left|z_{0}\right|(\cos \theta+i \sin \theta)$ we try to find α such that

$$
\left|z_{0}\right|(\cos \theta+i \sin \theta)=\left[\left|z_{0}\right|^{\frac{1}{n}}(\cos \alpha+i \sin \alpha)\right]^{n}
$$

- By De Moiver's formula $\cos \theta=\cos n \alpha$ and $\sin \theta=\sin n \alpha$, that is, $n \alpha=\theta+2 k \pi \Rightarrow \alpha=\frac{\theta}{n}+\frac{2 k \pi}{n}$. The distinct values of w is given by $\left|z_{0}\right|^{\frac{1}{n}}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right)$, for, $k=0,1,2, \ldots, n-1$.

