(1) Let f be an entire function such that $\lim _{z \rightarrow \infty}\left|\frac{f(z)}{z}\right|=0$. Show that f is constant.
(2) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function which is analytic on $\mathbb{C} \backslash\{0\}$ and bounded on $B\left(0, \frac{1}{2}\right)$. Show that $\int_{|z|=R} f(z) d z=0$ for all $R>0$.
(3) Show that an entire function satisfying $f(z+1)=f(z)$ and $f(z+i)=f(z)$ for all $z \in \mathbb{C}$ is a constant.
(4) Let $g(z)$ be an analytic in $B(0,2)$. Compute $\int_{|z|=1} f(z) d z$ if

$$
f(z)=\frac{a_{k}}{z^{k}}+\cdots+\frac{a_{1}}{z}+a_{0}+g(z)
$$

where a_{i} 's are complex constants.
(5) Let f be an entire function such that $|f(0)| \leq|f(z)|$ for all $z \in \mathbb{C}$. Then either $f(0)=0$ or f is constant.
(6) Find the radius of convergence of the following power series:
(a) $\sum_{n>0} z^{n!}$
(b) $\sum_{n \geq 0}^{n \geq 0} 2^{n^{2}} z^{n}$
(c) $\sum_{n \geq 0} \frac{(-1)^{n}}{n} z^{n(n+1)}$
(d) $\sum_{n \geq 0} a_{n} z^{n}$ where $a_{n}= \begin{cases}2^{n} & \text { if } n \text { is odd } \\ 3^{n} & \text { if } n \text { is even. }\end{cases}$
(7) Find the power series expansion of the following functions about the point $z_{0}=0$ and find its radius of convergence
(i) $f(z)=\cos ^{2} z$
(ii) $f(z)=\sinh ^{2} z$
(iii) $f(z)=\log (1+z)$
(iv) $f(z)=\sqrt{z+2 i}$
(v) $f(z)=\int_{0}^{z} \exp \left(w^{2}\right) d w$
(8) Find the Taylor series for the function $\frac{1}{z}$ about the point $z_{0}=$ 2. Then, by differentiating that series term by term, show that $\frac{1}{z^{2}}=\frac{1}{4} \sum_{n=0}^{\infty}(-1)^{n}(n+1)\left(\frac{z-2}{2}\right)^{n}$ for $|z-2|<2$.
(9) Expand $f(z)=\frac{1}{1-z}$ in a power series about the point $z_{0}=2 i$.
(10) If the radius of convergence for the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R, then find the radius of convergence for the following:
(i) $\sum_{n=0}^{\infty} n^{3} a_{n} z^{n}$
(ii) $\sum_{n=0}^{\infty} a_{n}^{4} z^{n}$
(iii) $\sum_{n=0}^{\infty} a_{n} z^{2 n}$
(iv) $\sum_{n=0}^{\infty} a_{n} z^{7+n}$
(v) $\sum_{n=1}^{\infty} n^{-n} a_{n} z^{n}$
(11) Expand each of the following functions about the point $z=1$ into a power series and find the radius of convergence:
(i) $\frac{z}{z^{2}-2 z+5}$
(ii) $\sin \left(2 z-z^{2}\right)$
(iii) $\log \left(1+z^{2}\right)$
(12) Using the Cauchy product of series, find the first four non-zero terms of the Maclaurin series of $e^{z} /(1-z)$.
(13) Prove or disprove the existence of an analytic function in a neighborhood of the origin satisfying $\left|f^{(n)}(0)\right| \geq(n!)^{2}, n=1,2, \ldots$.
(14) Suppose f is analytic on the open unit disc D and it satisfies $|f(z)| \leq 1$ for all $z \in D$. Show that $\left|f^{\prime}(0)\right| \leq 1$.
(15) Let z_{0} be a zero of order m and n respectively for the analytic functions f and g. Find the nature of the point z_{0} for the following functions.
(i) $f+g$
(ii) $f g$ (product)
(iii) $\frac{f}{g}$
(iv) $\frac{f}{f^{\prime}}$
(v) $\frac{f^{\prime}}{f}$
(vi) $\frac{1}{f} \quad$ (vii) $\exp (1 / f(z))$.
(16) Prove or disprove that there exists a non-constant function that is analytic in $|z|<1$ such that $f\left(\frac{1}{n}\right)=\frac{(-1)^{n}}{n}$ for $n=2,3,4, \cdots$.
(17) Prove or disprove that there exists a non-constant function that is analytic in $|z|<1$ such that $f\left(\frac{1}{n}\right)=f\left(\frac{-1}{n}\right)=\frac{1}{n}$ for $n=2,3,4, \cdots$.
(18) Is there a polynomial $P(z)$ such that $P(z) e^{\frac{1}{z}}$ is an entire function? Justify your answer.
(19) Find the Laurent series of the function $f(z)=\exp \left(z+\frac{1}{z}\right)$ around 0 . Hence show that for all $n \geq 0$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \cos n \theta d \theta=\sum_{k=0}^{\infty} \frac{1}{(n+k)!k!}
$$

(20) If f and g are entire functions such that $g \bar{f}$ is entire then either f is constant or $g \equiv 0$.
(21) Find the Laurent series expansion of the following functions about the given points $z=z_{0}$ or in the given region (specify the region in which the expansion is valid wherever it is necessary).
(a) $z^{2} \exp (1 / z)$ in the neighborhood of $z=0$
(b) $\frac{1}{z^{2}+1}$ in the neighborhood of $z=-i$
(c) $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ for $0<|z|<1$ and for $1<|z|<2$.
(22) Let $f(z)=(z+1)^{2}$ for $z \in \mathbb{C}$. Let R be the closed triangular region with vertices at the points $z=0, z=2$ and $z=i$. Find points in R where $|f(z)|$ has its maximum and minimum values.
(23) For the following functions, locate and classify all the singular points.
(i) $\sin \left(\frac{1}{z}\right)$
(ii) $\frac{1}{\sin \left(\frac{1}{z}\right)}$
(iii) $\cot z-(2 / z)$
(iv) $\frac{z \exp (1 /(z-1))}{\exp (z)-1}$
(24) Using Rouché's theorem prove Fundamental Theorem of Algebra.
(25) Find the isolated singularities and compute the residue of the functions
a) $\frac{e^{z}}{z^{2}-1}$,
b) $\frac{3 z}{z^{2}+i z+2}$,
c) $\cot \pi z$,
d) $\frac{\pi \cot \pi z}{\left(z+\frac{1}{2}\right)^{2}}$.
(26) Find the residues of the function $\frac{1}{z^{3}-z^{5}}$ at all isolated singular points in $\widehat{\mathbb{C}}$.
(27) Find the residues of $f(z)=\frac{e^{i m z}}{z^{2}+a^{2}},(m, a$ real) at its singularities in \mathbb{C}.
(28) Show that the residue at the point at infinity for the function $f(z)=\left(\frac{z^{4}}{2 z^{2}-1}\right) \sin \left(\frac{1}{z}\right)$ is equal to $(-1 / 6)$.
(29) Evaluate $\int_{C} \frac{z d z}{\cos z}$ where $C:\left|z-\frac{\pi}{2}\right|=\frac{\pi}{2}$.
(30) Using the Cauchy's residue theorem, evaluate $\int_{C} \frac{\left(z^{2}+3 z+2\right)}{\left(z^{3}-z^{2}\right)} d z$ where $C:|z|=2$.
(31) Using the argument principle, evaluate $\frac{1}{2 \pi i} \int_{C} \cot z d z$ where $C:|z|=7$.
(32) Let $f(z)=\left(z^{3}+2\right) / z$. Let $C: z(\theta)=2 e^{i \theta}, 0 \leq \theta \leq 2 \pi$ be the circle. Let Γ denote the image curve under the mapping $w=f(z)$ as z traverses C once. Determine the change in the argument of $f(z)$ as z describes C once. How many times does Γ wind around the origin in the w-plane and what is the orientation of Γ ?
(33) Using Rouche's theorem, find the number of roots of the equation $z^{9}-2 z^{6}+$ $z^{2}-8 z-2=0$ lying in $|z|<1$.
(34) How many roots of the equation $z^{4}-5 z+1=0$ are situated in the domain $|z|<1$? In the annulus $1<|z|<2$?

Practice Problems
(35) Prove that $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{2 a^{3} \sqrt{2}}, \quad(a>0)$
(36) Prove that $\int_{0}^{\infty} \frac{x \sin (m x) d x}{x^{2}+a^{2}}=\frac{\pi}{2} \exp (-m a), m>0$
(37) Prove that P.V. $\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{3}+1\right)}=\frac{\pi}{\sqrt{3}}$
(38) Prove that $\int_{0}^{\infty} \frac{\sin (\pi x) d x}{x\left(1-x^{2}\right)}=\pi$
(39) Using "Indented contour", show that $\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi}{\sqrt{2}}$ by integrating an appropriate branch of the multiple valued function.
(40) Using "key hole contour", show that $\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi}{\sqrt{2}}$ by integrating an appropriate branch of the multiple valued function.
(41) State where the following mappings are conformal.
(i) $w=\sin z$
(ii) $w=z^{2}+2 z$.
(42) Show that the mapping $w=\cos z$ is not conformal at $z_{0}=0$.
(43) Find a bilinear transformation which maps $2, i,-2$ onto $1, i,-1$.
(44) Find a Mobius transformation which maps $0,1, \infty$ onto $i,-1,-i$.
(45) Find a Mobius transformation which maps $i,-1,1$ onto $0,1, \infty$.
(46) Find a bilinear transformation which maps $\infty, i, 0$ onto $0, i, \infty$.
(47) Show that the transformation $w=\frac{z-i}{1-i z}$ maps the interior of the circle $|z|=1$ onto the lower halfplane $\operatorname{Im}(w)<0$.
(48) Find the image of the straight line $\operatorname{Re}(z)=a$ (constant) in the z-plane under the mapping $w=\frac{z-1}{z+1}$.

