COMPLEX ANALYSIS

ASSIGNMENT-3

(1) Find the values of z such that (a) $e^{z} \in \mathbb{R}$ and (b) $e^{z} \in i \mathbb{R}$.
(2) Prove that $\sinh (\operatorname{Im} z) \leq|\sin (z)| \leq \cosh (\operatorname{Im} z)$. Deduce that $|\sin (z)|$ tends to ∞ as $|\operatorname{Im} z| \rightarrow \infty$.
(3) Find all the complex numbers which satisfy the following:
(i) $\exp (z)=1$
(ii) $\exp (z)=i$
(iii) $\exp (z-1)=1$.
(4) Evaluate the following:
(i) $\log (3-2 i)$
(ii) $\log i$
(iii) $(i)^{(-i)}$
(5) If γ is the boundary of the triangle with vertices at the points $0,3 i$ and -4 oriented in the counterclockwise direction then show that $\left|\int_{\gamma}\left(e^{z}-\bar{z}\right) d z\right| \leq 60$.
(6) Evaluate $\int_{\gamma}|z| \bar{z} d z$ where γ is the circle $|z|=2$.
(7) Use ML-inequality to obtain the following upper bounds:
(a) $\left|\int_{|z-1|=2} \frac{1}{z} d z\right| \leq 4 \pi$
(b) $\left|\int_{|z|=10} \frac{z-1}{z+1} d z\right| \leq \frac{220}{9} \pi$
(c) $\left|\int_{\gamma} \frac{1}{z^{4}+1} d z\right| \leq \frac{3}{80} \pi, \gamma(t)=3 e^{i t}, t \in[0, \pi]$

