MA 201 COMPLEX ANALYSIS ASSIGNMENT-2

- (1) Show that $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(x, y) = (x, -y) for all $(x, y) \in \mathbb{R}^2$ is differentiable at every point in \mathbb{R}^2 . View the same function as a complex function. Show that $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \overline{z}$ for all $z \in \mathbb{C}$ is not differentiable at any point in \mathbb{C} .
- (2) Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there do not exist any point c on the line y = 1 x joining z_1 and z_2 such that

$$\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$$

(Mean value theorem does not extend to complex derivatives).

- (3) If f(z) is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either f'(z) = 0 or f'(z) does not exist in D.
- (4) Let U be an open set and $f: U \to \mathbb{C}$ be a differentiable function. Let $\overline{U} := \{\overline{z}: z \in U\}$. Show that the function $g: \overline{U} \to \mathbb{C}$ defined by $g(z) := \overline{f(\overline{z})}$ is differentiable on \overline{U} .
- (5) Derive the Cauchy-Riemann equations in polar coordinates.
- (6) Let $f : \mathbb{D} \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, f(z) = f(w) whenever |z| = |w|. Prove that f is a constant function. (Use CR equations in polar coordinates)
- (7) Let f = u + iv is an analytic function defined on the whole of \mathbb{C} . If $u(x, y) = \phi(x)$ and $v(x, y) = \psi(y)$ prove that, for all $z \in \mathbb{C}$, f(z) = az + b for some $a \in \mathbb{C}, b \in \mathbb{C}$.
- (8) Let v be a harmonic conjugate of u. Show that $h = u^2 v^2$ is a harmonic function.