MA 201

COMPLEX ANALYSIS

ASSIGNMENT-2

(1) Show that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(x,-y)$ for all $(x, y) \in \mathbb{R}^{2}$ is differentiable at every point in \mathbb{R}^{2}. View the same function as a complex function. Show that $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=\bar{z}$ for all $z \in \mathbb{C}$ is not differentiable at any point in \mathbb{C}.
(2) Let $f(z)=z^{3}$. For $z_{1}=1$ and $z_{2}=i$, show that there do not exist any point c on the line $y=1-x$ joining z_{1} and z_{2} such that

$$
\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}=f^{\prime}(c)
$$

(Mean value theorem does not extend to complex derivatives).
(3) If $f(z)$ is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either $f^{\prime}(z)=0$ or $f^{\prime}(z)$ does not exist in D.
(4) Let U be an open set and $f: U \rightarrow \mathbb{C}$ be a differentiable function. Let $\bar{U}:=$ $\{\bar{z}: z \in U\}$. Show that the function $g: \bar{U} \rightarrow \mathbb{C}$ defined by $g(z):=\overline{f(\bar{z})}$ is differentiable on \bar{U}.
(5) Derive the Cauchy-Riemann equations in polar coordinates.
(6) Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}, f(z)=$ $f(w)$ whenever $|z|=|w|$. Prove that f is a constant function. (Use CR equations in polar coordinates)
(7) Let $f=u+i v$ is an analytic function defined on the whole of \mathbb{C}. If $u(x, y)=$ $\phi(x)$ and $v(x, y)=\psi(y)$ prove that, for all $z \in \mathbb{C}, f(z)=a z+b$ for some $a \in \mathbb{C}, b \in \mathbb{C}$.
(8) Let v be a harmonic conjugate of u. Show that $h=u^{2}-v^{2}$ is a harmonic function.

