Modal Phase Matching in GaAs/AlGaAs Waveguides: Second Harmonic Generation With Femtosecond Pulses Near 1.5 µm

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh

School of Physics and Astronomy, University of St. Andrews North Haugh, Fife KY16 9SS, Scotland, UK.

A. De Rossi, M.Calligaro, and V. Ortiz

THALES, Laboratoire Central de Recherches, Domaine de Corbeville, 91400 Orsay, France

V. Berger

Pôle "Matériaux et Phénomènes Quantiques," CNRS 2437, Université Denis Diderot Paris VII, 2 Place Jussieu, 75251 PARIS

CLEO 2003, Baltimore, USA

Plan for the talk

- \rightarrow Introduction
- → Phase-matching Techniques (BPM, QPM, <u>MPM</u>)
- \rightarrow Sample + Experiment
- \rightarrow Results and Discussion
- \rightarrow Conclusions

INTRODUCTION

GaAs-based devices:

- ✓ Large nonlinear coefficients [d_{14} ~170 pm/V @ 2 µm]
- ✓ d^2/n^3 (figure-of-merit) ~10 times * LiNbO₃.
- ✓ Broad transparency (0.9-17.0 µm)
- ✓ High laser-damage threshold
- ✓ <u>Integrability</u>
- ✓ No photo-refractive effect (Room temperature operation)
- X Lack of intrinsic birefringence → Problem with phase matching <u>Solution:</u>
- > Quasi-Phase Matching (QPM)
- Form Birefringence Phase Matching (BPM)
- Modal Phase Matching (MPM)

I QPM

CLEO 2003, Baltimore, USA

- DemonstratedQPMSHGusingfemtosecond pulses @1.55 μm.
- (Domain disordering QWI): ~25 nW SHG power in 3rd order QPM
- (Ion-implantation induced intermixing):
 ~10 μW in 1st order QPM for ~50 mW of input power

II BPM

- TE and TM waves experience different refractive indices at the interfaces for tangential and normal fields.
- The strong refractive index contrast between semiconductor (n ~3.4) and the Alox (n ~1.6) results in a Form Birefringence.
- First demonstration of SHG using femtosecond pulses near <u>2.0 μm</u>
- ~650 μW maximum SHG power in a 1-mm waveguide for 50 mW of pump power (>1000%W⁻¹cm⁻²)

$$n_{TE}^{2} = \frac{h_{1} \cdot \varepsilon_{1} + h_{2} \cdot \varepsilon_{2}}{h_{1} + h_{2}} \qquad \frac{1}{n_{TM}^{2}} = \frac{\frac{h_{1}}{\varepsilon_{1}} + \frac{h_{2}}{h_{1}}}{h_{1} + h_{2}}$$

MODAL PHASE MATCHING

- Exploitation of modal dispersion to compensate material dispersion
- Direct + simple approach; Studied in polymer waveguides
- o Main restriction: Mode overlap
- Previous reports in semiconductor waveguides:
- a) SHG @ ~10.0 μm [APL <u>19</u>, 266, (1971)]
- b) SHG @ ~2.0 μm [APL <u>25</u>, 238, (1974)]
- o Type II: $TE_0 + TM_0 \rightarrow TE_2$
- o Type I: $TE_0 \rightarrow TM_2$

CLEO 2003, Baltimore, USA

- M-type waveguide approach
- Proper M-waveguide design leads to significant increase in overlap:
 <u>LiNbO₃</u> (Chowdhury, McCaughan) [IEEE PTL 12, 486 (2000)]
 <u>GaAs</u> (Oster, Fouckhardt) [IEEE PTL 13, 672 (2001)]

Structure design:

- 1) Cladding: 1000 nm Al_{0.98}Ga_{0.02}As
- 2) Outer core: 130 nm Al_{0.25}Ga_{0.75}As
- 3) Inner core: 260 nm Al_{0.5}Ga_{0.5}As
- 4) Both Type I and II possible Mode overlap optimized for type II

CLEO 2003, Baltimore, USA

EXPERIMENT

O Maximum SHG power ~10.3 μW for input power of ~65 mW (Type-II).
O ~2.6 μW for Type-I

 \rightarrow <u>Overall device efficiency</u> <u>0.015 %</u> (II)

O Estimated coupling efficiency ~30 %. Collection efficiency (third-order SHG) ~30 %.

Hence, ~30 μW of SHG power was generated inside the waveguide for <20 mW of coupled input power,

 \rightarrow Internal device efficiency ~0.15% (II)

CLEO 2003, Baltimore, USA

• Temperature tuning available at a rate of ~ 0.08 nm/ ⁰C

Comparison with other waveguides

- **PSN GaAs (SHG)**
- AlGaAs (QPM/SFM)
- **PPLN (QPM/SHG)**
- **Polymer (MPM/SHG)**
- GaAs/AlAs (QPM/SHG)
- **GaAs/Alox (BPM/SHG)**
- GaAs/AlAs (MPM/SHG)

- : ~0.1 % (<u>Internal</u>, P_{out} / P_{in}) @ 2.0 µm (OL <u>26</u>, 1984, 2001)
- : ~810 %/Wcm² @ 1.54 + 1.575 μm (JJAP <u>37</u>, 823, 1998)
- : ~150 %/Wcm² @ 1.55 μm (OL <u>27</u>, 179, 2002)
- : ~245 %/Wcm² @ 1.5 μ m (JOSAB <u>17</u>, 412, 2000)
- MgO:LiNbO₃ (QPM/SHG) : ~1200%/Wcm² @ 0.867 μ m (OL <u>22</u>, 1217, 1997)
 - : ~0.07 % Internal @ 1.55 μm (OL <u>28</u>, 911, 2003) ~1.2 %W⁻¹cm⁻² Normalized
 - : ~20 % Internal @ 2.01 μm (OL <u>26</u>, 1785, 2001) >1000 %/Wcm² Normalized
 - : >0.15% Internal @1.55 µm
 - ~ 2 % W⁻¹cm⁻² Normalized

CONCLUSIONS

- First demonstration of MPM in semiconductor waveguides using <u>femtosecond pulses</u>
- Type I phase matching near 1.505 μm Maximum SHG <u>~2.6 μW</u> Phase Matching Acceptance Bandwidth ~11 nm
- Type II phase matching near 1.545 μm Maximum SHG <u>~10.6 μW</u> Phase Matching Acceptance Bandwidth ~10 nm
- Overall device efficiency ~<u>0.015 %</u>
 Internal device efficiency <u>~0.15%</u>

THANK YOU.....

CLEO 2003, Baltimore, USA