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INTRODUCTION

GaAs/AlGaAs based waveguides are attractive because of their
1. Large second order coefficients [χ(2)  ~ 240 pm/V for GaAs at 1.0 µm]
2. Broad infrared transparency (0.9-17.0 µm) 
3. High laser-damage threshold
4. Integrability with semiconductor laser sources
5. No photo-refractive effect (Room temperature operation)

Lack of intrinsic birefringence → Problem with phase matching 
Solution:

(a) Quasi-Phase Matching (QPM) or  
(b) Birefringence Phase Matching [Selective oxidation of AlAs layers
to form Aluminium Oxide (Alox)].
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• Artificial birefringence can be engineered by piling up thin layers of 
materials of different indices of refraction.  

• TE and TM waves propagating in the structure experience different 
refractive indices due to the continuity relations at the interfaces of 
the multi-layers for tangential and normal fields.

• The amount of birefringence available depends on the thickness of 
the layers and the index contrast.  For the GaAs/AlAs system the
index contrast is not enough to phase match interesting interactions. 

• Selective oxidization of the AlAs layers, to form Alox was proposed 
as a method to introduce a useful index contrast. [Nature 391, 463 
(1998)]

• The strong refractive index contrast between semiconductor (n ~3.4) 
and the Alox (n ~1.6) results in a form birefringence strong enough to 
phase match the SHG process.
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GaAs/Alox Waveguides Structure

• (GaAs <001> substrate non 
intentionally doped) / 1000 nm 
Al0.92Ga0.08As / 1000 nm Al0.7Ga0.3As / 4 
x (50 nm AlAs / 250 nm GaAs) / 50 nm 
AlAs / 1000 nm Al0.7Ga0.3As / 30 nm 
GaAs. 

• Alloys composition and layer thickness 
designed to have SHG wavelength 
phase matched around 1.0 µm

Process steps

1. Ridge etching (optical confinement)
2. Mesa etching (to allow lateral 

oxidation)
3. Oxidation
4. Annealing (interface quality)
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EXPERIMENT
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Fundamental (Idler) Pulses



Input Idler Characteristics

• Near-transform limited pulses (~185 
fs) with 90 MHz repetition rate

• Idler tunable in the 1.7–2.1 µm range, 
with average power levels of ~50 mW

• Type–I phase matching: Input TE 
polarization → TM polarized output.

• Quadratic behaviour of SHG output 
vs input power as expected.  
Saturation behaviour in the shorter 
sample at higher input intensities, 
possibly due to multi-photon 
absorption.
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• Maximum observed SHG power ~650 µW 
for 1-mm waveguide and ~380 µW for 3-
mm waveguide with input power of  ~50 
mW

• Overall efficiencies (PSHG/PIDLER) of 0.78 
% (3-mm waveguide) and 1.3% (1-mm 
waveguide)

• Taking into account the facet reflectivity, 
transmission losses (~1 cm-1), geometrical 
coupling factor we estimated the launched 
power ~5 mW. Considering the duty cycle 
and the actual interaction length (due to 
GVM), we extract a normalized 
conversion efficiency of >1000 %W-1cm-2

for the 1-mm waveguide.Idler and SHG spectra
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• Transmitted idler FWHM was ~26 nm 
and generated SHG FWHM ~0.95 nm   
(3-mm) and ~1.3 nm (1-mm)

• Tuning curve (SHG output versus 
fundamental/idler wavelength) shows a 
peak around 2.0 µm.  FWHM of the 
tuning curve ~30 nm for 3-mm 
waveguide, and ~35 nm for 1-mm 
waveguide

• Pump depletion measurements (using  
InAs detector and a lock-in amplifier 
combination) in the 1-mm sample 
indicate about 40% of the total input 
pump power was depleted (converted to 
SHG and other loss mechanism).
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• The spectra of the transmitted 
idler recorded on and off-
resonance also showed depletion, 
supporting our argument. Within 
the phase-matching bandwidth 
the depletion was greater than 
80%.

• Any spectral shift within the 
pump bandwidth resulted in no 
shift in the position of the dip in 
the transmitted pump spectrum 
or in the position of the peak in 
the SHG spectrum.
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Comparison with other waveguides
PPLN waveguides : 150 % /W cm2 at 1.55 µm (OL 27, 179, 2002)

APE PPLN waveguides : 40 % /W cm2 (IEICE Trans. Elec. E83C, 869, 
2000)

KNbO3 waveguides : 30% /W cm2 at Ti:Sapphire wavelengths 

PSN GaAs waveguides : 0.1 %   (Internal, Pout / Pin) at 2.0 µm

QPM GaAs AlAs : 0.02 % (Internal, Pout / Pin) at 1.55 µm
(OL 25, 1370, 2000) 

Polymer waveguides : 0.05 % /W cm2 at 1.5 µm (APL 68, 1183, 1998)

MgO:LiNbO3 waveguides : 1000% /W at 772 nm (JJAP 40, 1751, 2001)

THIS WORK : 20 % Internal and 
(BPM GaAs/Alox) >1000 /W cm2 normalized, at 2.01 µm



CONCLUSIONS

• First demonstration of SHG in birefringent GaAs/AlGaAs 
waveguides using femtosecond pulses.  

• Usable SHG powers of ~650 µW for 1-mm waveguide and ~390 
µW for 3-mm waveguide. (With an input of ~50 mW).  FWHM of 
SHG ~0.95 nm (1-mm waveguide) & ~1.3 nm (3-mm waveguide).  
Input pulses had a FWHM of ~26 nm.

• Phase matching peak around 2.0 µm with SHG generated 
around 1.0 µm

• A normalized conversion efficiency >1000 %W-1cm-2 was 
achieved for the 1-mm waveguide.
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