Non-inertial systems
- Pseudo Forces



Frame of Reference

® An observer with a coordinate system and a clock etc.
® Could be moving!

® Coordinate transformations may be time dependent

Example Example

Coordinate Transformations
Coordinate Transformations
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Inertial Frames

If S’ is moving wrt S with velocity V. In S frame a particle is moving under

influence of a force /. The coordinate transformations are

The velocity and acceleration of the particle

u = u—V

a = d

Accelerations measured in two frames are same!

If S is inertial, then

ma

= md

S’ must be inertial!l (Galilean Relativity)
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Example

If S’ is moving wrt S with acceleration A. In S frame a particle is moving

. . under influence of a force /. The coordinate transformations are
Coordinate Transformations

1.
1 . 7= T— AP
o= x—a-— §At2 2
r The velocity and acceleration of the particle
y = y-—2>
I v = u-— At
y 1 ) -
! i = a—A
|
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: —S|> Accelerations measured in two frames are not same!
b . k
At %2 X
S
The force measured in S’ be F”.

Then, if S is inertial ma = F'. This implies

mad = F —mA

S’ is not inertial. Everything would seem alright if a "Fictitious” force —m A

is considered. principle of equivalence.



Example

. Non-Inertial Frame
Inertial Frame

A car is moving with an acceleration A to the right. A pendulum is hung
from the roof of the car. In inertial frame the bob Is moving with an

acceleration A. Passenger in the car sees the bob hanging steadily at an
angle to the vertical.



Accelerating frame

Newton's second law F= ma holds true only in inertial coordinate systems.

However, there are many noninertial (that is, accelerating) frames that one needs to
consider, such as elevators, merry-go-rounds, and so on.

Is there any possible way to modify Newton’s laws so that they hold in noninertial
frames, or do we have to give up entirely on F = ma? It turns out that we can in fact
hold on to F = ma, provided that we introduce some new “fictitious” forces. These are

forces that a person in the accelerating frame thinks exist.

Consideration of noninertial systems will enable us to explore some of the
conceptual difficulties of classical mechanics, and secondly it will provide deeper

insight into Newton's laws, the properties of space, and the meaning of inertia.



The Apparent Force of Gravity

A smallweight of massm hangsfrom a string in an automobile which acceleratesat
rate A. Whatisthe staticangleof the stringfrom the vertical,andwhatisits tension?

Let us analyze the problem both in an inertial
frame and in a frame accelerating with the car.

Inertial system System accelerating with auto

ﬁ
Acceleration =0

Acceleration = A

W % . :
Fromthe point of view of a passenger

T cos § — W =0 Tcos§—W=0 in the acceleratingcar, the fictitious
T sin 6 = MA Tsin 6~ Fg =0 force actslike a horizontalgravitational

tan 6 = Mwﬁ -4 r -_mya Torce Theeffective gravitationalforce

g fict :
, / 4 is the vector sum of the real and
T=M +A2 1/2 t g =— . .
(& ) an 6 =~ fictitious forces

T = M(g2 +A2)1/2



Cylinder on an Accelerating Plank

A cylinder of mass M and radius R rolls without slipping on a plank which is
acceleratedat the rate A. Findthe accelerationof the cylinder
plankis shownin the figure. a' is the accelerationof the

cylinderasobservedin a systemfixed to the plank fis

NG the friction, and k., = MA. with the direction shown

e The equations of motion in the system fixed to the
Fhice R acceleratingplank are

f
f - Ffict = Ma' and Rf = ‘—Ioa,.

The force diagram for the horizontal force on the
cylinder as viewed in a system acceleratingwith the

a
——
]—.A

The cylinder rolls on the plank without slipping, so a'R = a'.

G,, Ffict
—_— = Fic or a, = — .
rR: B M + I,/R?

Since Iy = MR?/2, and Fg,, = MA, we have @' = —3A.

These yield Ma' = —1I,

The acceleration of the cylinder in an inertial system is
a=A+ o = FA.



The Principle of Equivalence

Acceleration
a=g

A man is holding an apple in an elevator at rest in a gravita- '
tional field g. He lets go of the apple, and it falls with a down-
ward acceleration a = g. Now consider the same man in the
same elevator, but let the elevator be in free space accelerating -
U upward at rate @ = g. The man again lets go of the apple, and H
it again appears to him to accelerate down at rate g. From his

point of view the two situations are identical. He cannot dis-
tinguish between acceleration of the elevator and a gravitational
l field.

Gravity g

Thereis no way to distinguishlocally between a uniform gravitationalaccelerationg
and an accelerationof the coordinatesystemA = -g. Thisis known asthe principle of
equivalence However, such indistinguishablenature of two forces is valid only for
point objects.

Gravitationalfield does not extend uniformly through all of space Realforces arise
from interactions between bodies, and for sufficiently large separationsthe forces
always decrease Realforces are then local An acceleratingcoordinate systemis
nonlocal the accelerationextendsuniformly throughoutspace

Thetides on the earth existbecausehe gravitationalforce from a point masslike the
moonor the sunis not uniform.



ABy 1905, Albert Einstein had created a new framework for the laws
of physics - his special theory of relativity. However, one aspect of
physics appeared to be incompatible with his new ideas: the
gravitational force as described by Newton's law of gravity.
Special relativity provides a new framework for physics only when
gravity is excluded. Years later, Einstein managed to unify gravity
and his relativistic ideas of space and time. The result was another
revolutionary new theory, general relativity.

AEinstein's first step towards that theory was the realization that,
even in a gravitational field, there are reference frames in which
gravity is nearly absent; in consequence, physics is governed by
the laws of gravity-free special relativity - at least to a certain
approximation, and only if one confines any observations to a
sufficiently small region of space and time. This follows from what
Einstein formulated as his equivalence princip/e which, in turn, is
inspired by the consequences of free fall.



http://www.einstein-online.info/en/navMeta/dictionary/s/index.html#SRT
http://www.einstein-online.info/en/navMeta/dictionary/n/index.html#Newtonian_gravity
http://www.einstein-online.info/en/navMeta/dictionary/g/index.html#GRT
http://www.einstein-online.info/en/navMeta/dictionary/r/index.html#reference_frames

Rotating Frames

Consider a system moving about z
axis

Coordinate Transformations

v’ = xcos(wt)+ ysin(wt)
y = —xsin(wt) + ycos(wt)

If seen from fixed system, the coordinate axes 1’ and j’ would appear to be

rotating. These vector relate to 1 and J,

i’ = icos(wt)+ jsin(wt)
j’ = —isin(wt) + jcos(wt)
k' = k



Suppose a vector }Ychanges In fixed frame by amount A%Y in time Af.

Fixed Frame Rotating Frame

In rotating frame the change would be same, if it had occurred

instantaneously. But in time Af, the frame has turned.

(AA) = AA—G x AA)

dA dA -
— —_— W x A
dt ( dt ) f T



If a particle is moving in fixed frame, the velocity is given by

o + WX
dat \dt), ”

—

v = U4 (wxT)

The acceleration is given by

dv dv S %D
— = | — WX U
dt dt ) ..,

dv dv’ ~ . L
= ( ) + 25 X T+ 3 X (3 X 7)
rot

dt dt
My = Mmad—20 XU —d X (JX7T)
Ma,e = F—20x0 —d x (dx7)

The two terms are called Coriolis Force and Centrifugal Forces.



Example

Consider a particle that is performing uniform circular motion in fixed frame
with angular speed w In a plane. A frame rotating with same angular speed

will see the particle at rest. The free body diagrams are

Fixed Frame Rotating Frame



Rotating Coordinate System

The transformation from an inertial coordinate system to a rotating system is
fundamentallydifferent from the transformationto atranslatingsystem

A uniformly rotating system is intrinsicallgoninertial.

If a particle of massm is acceleratingat rate a with respectto inertial coordinatesand
at rate a,, with respectto a rotating coordinatesystem,then the equationof motion
In the two systemsare givenby

F = ma and F., = ma,..

If the accelerations ah in the two systems are related by = a,,, + A,
where A is the relative acceleration, then

Frot

I

m(a — A)
= F + Fuee, ~ Where Frop = —mA.

Thusthe argumentis identicalto that in a translatingsystem Ourtasknow isto find A
for arotating system



Time Derivatives and Rotating Coordinates

Consideran inertial coordinatesystemyx, y, z and a coordinate systemx', y', z' which
rotates with respectto the inertial systemat angularvelocity W. Theoriginscoincide
An arbitrary vector B can be describedby componentsalong basevectors of either

coordinatesystemas - .
y B = B,i + B,j+ Bk or, B=B4i + B+ BK,

VA Q o a , A
&/) where i, j, k and ¥, j’, k' arethe basevectorsalong
N 92a the inertial axesandthe rotating axesrespectively
N /
AN J/ The z, y, z system is inertial so that i, j, and k are fixed in space. We
y have
dB _ dB.  dB,. . .
\ & a @ | N
x - In rotating system,
X
Q dB dB dB, dB , dk
o= Z ay i’ A/ — B —
(dt) (dt dt Ta )+< + ydt+ dt>

_ (9B di dj’ , dk
(alt)rc,tJF(B_Jr yaltJr dt>

. dB dB
= Q Xi. and hence, (?z?) = <—d?> + Q x B.

ai’
dt




Velocity and Acceleration in Rotating Coordinates

VA / S?,
- dB dB
N &B/y' SInCe, (E)in = (Ez>mt + Q % B.
N\ /
AN /
dar dr
’ dt ~ \at : Vin = V .
(dt)in (dt)mt Taxr or rot T Q X

X \ a. — (dvin> . (dvin) + Q X V;
¥ T Ndt S \dt S

d
=[Zl—t(vr°t+gxr)] + Q X Vi + Q X (Q X I).

rot

We shall assume that Q is constant, since this is the case generally
needed in practice. Hence

dr
ain=arot+Qx(d_t> +varot+QX(er)y
rot

Or Qpt = Qin — 2Q X Vot — Q X (Q X I’).



Apparent Force in Rotating Coordinates

The force observed in the rotating system is
Fiot = Maror = Majn — M[2Q X Vot + Q X (Q X 1)]
= F 4 Ficty where Fiice = —2mQ X Vior — mQ X (Q X ).

Thefirst term is calledthe Coriolisforce, a velocity dependentforce and the second
term, radiallyoutward from the axisof rotation, is calledthe centrifugalforce.

Theseare nonphysicalforces they arisefrom kinematicsand are not due to physical
Interactions Centrifugalforce increaseswith distancer, whereasreal forces always
decreasewith distance

Coriolisand centrifugal forces seem quite real to an observerin a rotating frame.

Drivinga car too fast arounda curve,it skidsoutward asif pushedby the centrifugal
force. Foranobserverin aninertial frame, however,the sidewardforce exertedby the

roadonthe tiresis not adequateto keepthe carturning with the road.

Arockwhirling on a string, centrifugalforceis pullingthe rock outward. In a coordinate
systemrotating with the rock, this is correct, the rock s stationaryandthe centrifugal
force Is in balancewith the tension in the string. In an inertial systemthere is no
centrifugalforce; the rockis acceleratingadiallydueto the force exertedby the string

Either system is valid for analyzing the problem.



Apparent Force in Rotating Coordinates

The force in the rotating system is

= MAayet = MAaAin — m[ZQ X Viot "l" Q X (Q X r)]

Frot -
= F + Ffict!
where Fgiey = —2mQ X Vior — M X (Q X 1).

Thefirst term is calledthe Coriolisforce, a velocity dependentforce and the second
term, radiallyoutward from the axisof rotation, is calledthe centrifugalforce.

Now we will discuss a few examples.



The bead sliding on a stick

A bead slides without friction on a rigid wire rotating at constant angular speddhe
problem is to find the force exerted by the wire on the bead.

C | o In a coordinate system rotating with the wire the
r—— motion is purelyradial F,, is the centrifugalforce and
* 'S — k. IS the Coriolisforce. Sincethe wire is frictionless,
the contact force N is normal to the wire. In the
N rotating systemthe equationsof motion are
~ & I\ Fcent — mr and N - FCor = 0
C9 _____ (1)—"—_1::ent Since, F,,,, = mw?r, mMF — mwir =0,
F Cor Hence, r = Ae*' + Be !,
The other equation gives: where A and B are constantsdependingon the
N = Fg,, = 2miw Initial conditions

= 2mw?(Ae®t — Be @),
To complete the problem, apply the initial conditions which spetidydB.
Consider the following initial conditions and find the final valudl.of

(Jatt=0r =0 H;i( )dt €6 OFv, I tat rO0,&r’, =
For (iii), r =a coshmt



bS4i2yQa 0dzO01 S

A bucket half full of water is madeto rotate with angularspeed\W about its axis of
symmetry,whichis vertical Findthe pressurein the fluid. By consideringthe surfaces
of constantpressure find the shapeof the free surfaceof the water.

In the rotating frame, the bucket s at rest. \MEA
Supposethat the water has come to rest s e
relative to the bucket The equation of . -
“ hydr oistheaotaiing fameis

F+E_, - P G

cent

| whereF = + g, the body force per unit volume,

—

F. .= - V\(’f \7&)? and - P rBpesents the force due to presgradient

cent
ThenOP = rgk r 2k\ﬁ k3ﬁ 3 gk -EFE
wherer is the distance of the volume element from the rotation axis ajfd Is the unit
vector pointing in the direction of increasimg

Then”—P = g and—E = “I\W, after integratiom, %: r’r’'w gz  cordte
Mz n
2

For pressure to be COﬂStaH;{/‘V\FI’Z 0z =const .Z)r—2r # ,asapoloid.
g




Motion on the Rotating Earth

Fixan inertial frame at the center of the earth. Fixanother coordinatesystemat somepoint on
the surfaceof the earth but rotating alongwith the earth with angularvelocityw. A particle P of
massm is moving abovethe surfaceof the earth subjectto a force F and acted upon by the

gravitationalforce mg. L
rr=R +,
Z s & o~ ~
adr' _4drR 60 dd gdR O -
wd e 0@, 0t G IR
P gdt i gdt — @in - ot~
adr 6 . (5 -
= 4 r
x ma o R
ad’r' 0_d&adr 6 . (5 .\ 9
= __ 7 r _|,W r A W+
Y> thz m9 dt gcdt rct9 ( )l-r!l:!
&d°r © adr & #
=g o 2W 5 WS
= 0 W gy o e
ad’r 0 _ - , - - _adr ¢
Mge— ¢ =F Hng mv e%(R a@mege— 8
cdt® = € u dt z
=F mgg w (w TP g2mwv 3
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w
=
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o. . _\0
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v is the velocity of the
particlein the rotating frame.



Effectiveg A B T
<15 g/-fv;(*w R} since,r] R, © R,Hencd,, I w (W R)

Jet The gravitational accelerationmeasuredat any point

will be this effectiveaccelerationandit will be lessthan

> the accelerationdueto the earthif it were not rotating.

Thecentrifugalacceleration,- 3(T/l/ ﬁ) alwayspoints
radiallyoutward. It is zeroat the pole and maximumat
the equator

Sothe effective accelerationdue to gravity doesnot act to the center of the earth.
However,g.+ mustbe perpendicularto the surfaceof the earth. Thatiswhy the shape
of the earthis an oblate ellipsoid,flattened at the poles

The maximum value of the centrifugal acceleration at the equatoniéR.
takingR= 6.4310 m andy =7.29 310 radian per
W'R=3.4 310° m/s

which 1 s about 0.3 percent of the earth’s



Effect ofCoriolisforce

Considera particlein the northern hemisphereat latitude
g movingwith velocityv towardsnorth, i.e. v =

So theCoriolisacceleration is- 2vAE 3 2 wrsin g
toward the east In the southern hemisphereit will
toward west It is maximumat the polesand zero at the
equator

At the north pole, for a particle moving with a velocity of
1 km/s, it is given by2uwwv =2 37.29 10° 1 0°15m#:

Although the magnitude of Coriolisaccelerationis small, it playsimportant role in
manyphenomenaon the earth.

1. It is important to consider the effect Qforiolisacceleration in the flight of missile,

for which velocity and time of flight are considerably large. The equation of motion is
given by m%: -ng 2 iy "\

2. Thesenseof wind whirling in a cyclonein the northern and southernhemisphereIn

the northern hemisphereit is in the anticlockwisesensewhereasin the southern
hemispherat isin the clockwisesense



Freely falling particle

Findthe horizontaldeflectiond from the plumb line causedby the Coriolisforce acting
onaparticlein E a r grdawitagonalfield from aheighth abovethe E a r sulfdces

After integration:

x = }wgt® cos @

Z = zg == Lgt?

. 3\ 1/2
Sincez,=h ks JE and Jd= %4 cos 6 (SE)

Acceleration: a-—g — 2wy

Components oWw.
w, =0, o, = wcos 6 and w, — w sin #
Although, the Coriolis force produces small velocity

components along x and y directions, they can be
neglectedin comparisorno the verticalcomponent

xe2l, Y0 and i = —gi
The components of @, = X = 2wgt cos
acceleration are: a, =y =0
J, —= ;'_-" = —g

&

. Toward east

If h=100 m and=45 then the deflection would be 1.55 cm



