Angular Momentum

\&
 Fixed Axis Rotation (contd)

Summary of rotational motion

All rigid body motion can be split into:

- A translation of one point of rigid body
- Rotation of rigid body about that point

A special case in which rigid body motion is combination of fixed axis rotation + translation of fixed axis keeping it parallel to the some fixed axis in space.

A general motion can always be split into a rotation + a translation

Example of pure rotation and rotation plus translation

Pure Rotation

Each point of the rigid body performs a circular motion about O.

Rotation plus translation

The point shown moves long a straight line

Example of pure rotation: A rotating top

All points of the top are restricted to a spherical surface.

Example of rotation + Translation: Tyre Rolling

Calculating Angular Momentum for rotation + translation

A: CM of body $R_{A} \quad \vec{L}=\sum m_{i}\left(\vec{R}_{A}+{\overrightarrow{r^{\prime}}}_{i}\right) \times\left(\vec{V}_{A}+{\overrightarrow{v^{\prime}}}_{i}\right)$
P: A point of body \vec{r}

$$
\begin{aligned}
\vec{r} & =\vec{R}_{A}+\overrightarrow{r^{\prime}} \\
\vec{v} & =\vec{V}_{A}+\overrightarrow{v^{\prime}}
\end{aligned}
$$

Angular Momentum about O :

$$
\begin{aligned}
& \vec{L}=\sum m_{i} \vec{r}_{i} \times \vec{v}_{i} \\
& \vec{L}_{0}=\sum m_{i}{\overrightarrow{r^{\prime}}}_{i} \times{\overrightarrow{v^{\prime}}}_{i}
\end{aligned}
$$

Angular Momentum about A:

$$
\begin{aligned}
\vec{L} & =\sum m_{i} \vec{r}_{i} \times \vec{v}_{i} \\
& =\sum m_{i}\left(\vec{R}_{A}+{\overrightarrow{r^{\prime}}}_{i}\right) \times\left(\vec{V}_{A}+{\overrightarrow{v^{\prime}}}_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum m_{i} \vec{R}_{A} \times \vec{V}_{A}+\sum m_{i}{\overrightarrow{r^{\prime}}}_{i} \times{\overrightarrow{v^{\prime}}}_{i} \\
& +\sum m_{i} \vec{R}_{A} \times \vec{v}_{i}+\sum m_{i}{\overrightarrow{r^{\prime}}}_{i} \times \vec{V}_{A} \\
= & \left(\sum m_{i}\right) \vec{R}_{A} \times \vec{V}_{A}+\sum m_{i}{\overrightarrow{r^{\prime}}}_{i} \times{\overrightarrow{v^{\prime}}}_{i} \\
& +\vec{R}_{A} \times\left(\sum m_{i} \vec{v}_{i}\right)+\left(\sum m_{i}{\overrightarrow{r^{\prime}}}_{i}\right) \times \vec{V}_{A} \\
= & M \vec{R}_{A} \times \vec{V}_{A}+\vec{L}_{0} \\
= & \vec{L}_{c m}+\vec{L}_{0}
\end{aligned}
$$

Angular Momentum splits nicely into two terms

The angular momentum relative to the origin of a body can be
found by treating the body like a point mass located at CM

and

finding the angular momentum of this point mass relative to the
origin plus the angular momentum of the body relative to CM.

Kinetic energy

$$
K=\frac{1}{2} M V_{\mathrm{cm}}^{2}+\frac{1}{2} \mathrm{I}_{\mathrm{z}} \mathrm{~cm}^{2}
$$

The Kinetic energy of the body can be found by treating the body like a
point mass located at the CM, and the (rotational) kinetic energy of the body relative to CM.

Angular Momentum of a System of Particles

Consider a collection of N particles. The total angular momentum of the system is

$$
\mathbf{L}=\sum_{i=1}^{N} \mathbf{r}_{i} \times \mathbf{p}_{i}
$$

The force acting on each particle is $\mathbf{F}_{i}^{\text {ext }}+\mathbf{F}_{i}^{\text {int }}=d \mathbf{p}_{i} / d t$.
The internal forces come from the adjacent particles which are usually central forces, so that the force between two particles is directed along the line between them.

$$
\frac{d \mathbf{L}}{d t}=\frac{d}{d t} \sum_{i} \mathbf{r}_{i} \times \mathbf{p}_{i}=\sum_{i} \frac{d \mathbf{r}_{i}}{d t} \times \mathbf{p}_{i}+\sum_{i} \mathbf{r}_{i} \times \frac{d \mathbf{p}_{i}}{d t}
$$

$$
\mathbf{F}_{i}^{\mathrm{int}}=\sum_{i} \mathbf{F}_{i j}^{\mathrm{int}}
$$

$$
\tau^{\mathrm{int}} \equiv \sum \mathbf{r}_{i} \times \mathbf{F}_{i}^{\mathrm{int}}=\sum \sum \mathbf{r}_{i} \times \mathbf{F}_{i j}^{\mathrm{int}}
$$

$$
\boldsymbol{\tau}^{\mathrm{int}}=\sum_{j} \sum_{i} \mathbf{r}_{j} \times \mathbf{F}_{j i}^{\mathrm{int}}=-\sum_{j} \sum_{i} \mathbf{r}_{j} \times \mathbf{F}_{i j}^{\mathrm{int}}
$$

$$
\mathbf{F}_{i j}^{\mathrm{int}}=-\mathbf{F}_{j i}^{\mathrm{int}}
$$

-The total external torque acting on the body, which may come from forces acting at many different points.

$$
2 \tau^{\mathrm{int}}=\sum_{i} \sum_{j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \times \mathbf{F}_{i j}^{\mathrm{int}}=0
$$

-The particles may not be rigidly connected to each other, they might have relative motion .
In the continuous case, the sums need to be replaced with integrals.

The Torque

$$
\begin{aligned}
\vec{\tau} & =\sum\left(\vec{R}_{A}+{\overrightarrow{r^{\prime}}}_{i}\right) \times \vec{F}_{i} \\
& =\sum \vec{R}_{A} \times \vec{F}_{i}+\sum{\overrightarrow{r^{\prime}}}_{i} \times \vec{F}_{i} \\
& =\vec{R}_{A} \times\left(\sum \vec{F}_{i}\right)+\sum{\overrightarrow{r^{\prime}}}_{i} \times \vec{F}_{i} \\
& =\vec{R}_{A} \times \vec{F}+\vec{\tau}_{0}
\end{aligned}
$$

Torque also appears as two terms. Compare with

$$
\begin{aligned}
\frac{d \vec{L}}{d t} & =M \vec{R}_{A} \times \frac{d \vec{V}_{A}}{d t}+\frac{d \vec{L}_{0}}{d t} \\
& =\vec{R}_{A} \times \vec{F}+\frac{d \vec{L}_{0}}{d t}
\end{aligned}
$$

Dynamical Equations

$$
\begin{aligned}
\frac{d \vec{P}_{c m}}{d t} & =F \\
\frac{d \vec{L}_{0}}{d t} & =\vec{\tau}_{0}
\end{aligned}
$$

If a body moves such that the axis of rotation moves parallel to a fixed axis then we need to consider only the z component of angular momentum.

$$
\begin{aligned}
\frac{d \vec{L}_{0 z}}{d t} & =\vec{\tau}_{0 z} \\
I_{z z}^{0} \alpha & =\tau_{0 z}
\end{aligned}
$$

Conservation of L for a system of particles about a Point:

$\vec{\tau}^{e x t}=\frac{d \vec{L}}{d t}$, where $\vec{L}=\sum_{i=1}^{N} \vec{r}_{i} \times \vec{p}_{i}=\sum_{i=1}^{N} \vec{L}_{i}$ and $\vec{\tau}^{e e t}=\sum_{i=1}^{N} \vec{i}_{i}^{e e t}$

If $\vec{\tau}^{e x t}=0$, the net torque i.e. the sum of torque on individual particles is zero, the total angular momentum \vec{L}, the sum of angular momentum of individual particles will be constant.

That is

$$
\begin{gathered}
\vec{L}_{\text {initial }}=\vec{L}_{\text {final }} \\
\sum_{i=1}^{N}\left(\vec{r}_{i} \times \vec{p}_{i}\right) \quad=\sum_{\text {initial }}^{N}\left(\vec{r}_{i} \times \vec{p}_{i}\right)_{\text {final }}
\end{gathered}
$$

Example: Drum on Ice

No net force

$$
V_{c m}=\mathrm{const}
$$

No Net torque about C

$$
\omega=\mathrm{const}
$$

Ang Mom about C

$$
L_{0}=M b^{2} \omega / 2
$$

Ang Mom about O

$$
\begin{aligned}
L & =M b V_{c m}+L_{0} \\
L & =F b t+L_{0}
\end{aligned}
$$

Tyre on road will have a friction acting opposite to the direction of motion.

Example: Tyre on the road TYRE

The equations $(f<\mu N)$

$$
\begin{aligned}
M a_{c m} & =F-f \\
I_{0} \alpha & =b f
\end{aligned}
$$

If $f<\mu N$ then there is no slipping, $a=b \alpha$.

$$
\begin{aligned}
M a_{c m} & =F-I_{0} \alpha / b \\
M a_{c m}+\frac{1}{2} M b \alpha & =F \\
a_{c m} & =\frac{2 F}{3 M} \\
\alpha & =\frac{2 F}{3 M b}
\end{aligned}
$$

- Force F

$$
\text { and } f=F / 3 \text {. Clearlv } F<3 u N \text {. }
$$

The equations $(f>\mu N)$ that is $F>3 \mu N$

$$
\begin{aligned}
M a_{c m} & =F-\mu N \\
I_{0} \alpha & =b \mu N
\end{aligned}
$$

In this case tyre slides on the road, there is no relationship between α and

Angular momentum for Fixed Axis Rotation

By fixed axis we mean that the direction of the axis of rotation is always along the same line; the axis itself may translate.

For example, a car wheel attached to an axle undergoes fixed axis rotation as long as the car drives straight ahead. If the car turns, the wheel must rotate about a vertical axis while simultaneously spinning on the axle; the motion is no longer fixed axis rotation.

$$
\begin{aligned}
& \vec{L}_{j}=\vec{r}_{j} \times \vec{p}_{j} \\
& \vec{r}_{j}=\rho_{j} \hat{\rho}+z_{j} \hat{k}, \vec{p}_{j}=m_{j} \vec{v}_{j} \\
& \vec{v}_{j}=\vec{\omega} \times \vec{r}_{j}=\omega \hat{k} \times\left(\rho_{j} \hat{\rho}+z_{j} \hat{k}\right)=\omega \rho_{j} \hat{\theta} \\
& \vec{L}_{j}=\left(\rho_{j} \hat{\rho}+z_{j} \hat{k}\right) \times m_{j} \omega \rho_{j} \hat{\theta}=m_{j} \rho_{j}^{2} \omega \hat{k}-m_{j} z_{j} \rho_{j} \omega \hat{\rho}
\end{aligned}
$$

We are usually concerned only with L_{2}, the component of angular momentum along the axis of rotation.

$$
\left(\vec{L}_{j}\right)_{z}=L_{j z}=m_{j} \rho_{j}^{2} \omega, \quad L_{z}=\sum_{i} L_{j z}=\left(\sum_{i} m_{j} \rho_{j}^{2}\right) \omega=I \omega, \quad I=\sum_{j} m_{j} \rho_{j}^{2}
$$

For continuously distributed mass: $\quad \sum_{j} m_{j} \rho_{j}^{2} \rightarrow \int \rho^{2} d m, \quad I=$ moment of inertia

Moments of inertia of few symmetric objects:

A ring of mass M and radius R, axis through center, perpendicular to plane.		A ring of mass M and radius R, axis through center, in plane.	
A disk of mass M and radius R, axis through center, perpendicular to plane.		A disk of mass M and radius R, axis through center, in plane.	
A thin uniform rod of mass M and length L, axis through center, perpendicular to rod.		A thin uniform rod of mass M and length L axis through end, perpendicular to rod.	 $\boxed{\frac{1}{3} M L^{2}}$
A spherical shell of mass M and radius R, any axis through center.		A solid sphere of mass M and radius R, any axis through center.	

The parallel-axis theorem:

$$
I_{z}=M R^{2}+I_{z}^{\mathrm{CM}}
$$

The perpendicular-axis theorem:

$$
I_{z}=I_{x}+I_{y}
$$

Moment of Inertia Tensor

- Consider a rigid body rotating with a constaht angular velocity $\boldsymbol{\omega}$ about an axis passing thru' its origin.
- The velocity of the point i is given by

$$
\frac{\mathrm{d} \mathbf{r}_{i}}{\mathrm{dt}}=\boldsymbol{\omega} \times \mathbf{r}_{\mathrm{i}} .
$$

The total angular momentum of the body about the origin is,

$$
\mathbf{L}=\sum_{i=1, N} m_{i} \mathbf{r}_{i} \times \frac{d \mathbf{r}_{i}}{d t}=\sum_{i=1, N} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)=\sum_{i=1, N} m_{i}\left[r_{i}^{2} \boldsymbol{\omega}-\left(\mathbf{r}_{i} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{i}\right],
$$

The above formula has a matrix form

$$
\left(\begin{array}{l}
\mathrm{L}_{x} \\
\mathrm{~L}_{y} \\
\mathrm{~L}_{z}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{I}_{\mathrm{xx}} & \mathrm{I}_{\mathrm{xy}} & \mathrm{I}_{x z} \\
\mathrm{I}_{\mathrm{yx}} & \mathrm{I}_{y y} & \mathrm{I}_{\mathrm{yz}} \\
\mathrm{I}_{\mathrm{zx}} & \mathrm{I}_{z y} & \mathrm{I}_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right),
$$

where

$$
I_{x x}=\sum_{i=1, N}\left(y_{i}^{2}+z_{i}^{2}\right) m_{i}=\int\left(y^{2}+z^{2}\right) d m, \quad I_{x y}=I_{y x}=-\sum_{i=1, N} x_{i} y_{i} m_{i}=-\int x y d m
$$

are the Moment of Inertia about the x-axis and the product of inertia respectively.

Rotational Kinetic energy

The Kinetic energy is written as, $K=\frac{1}{2} \sum_{i=1, N} m_{i}\left(\frac{d r_{i}}{d t}\right)^{2}$.

$K=\frac{1}{2} \sum_{i=1, \mathrm{~N}} m_{i}\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right) \cdot\left(\boldsymbol{\omega} \times \mathbf{r}_{\mathbf{i}}\right)=\frac{1}{2} \omega \cdot \sum_{i=1, \mathrm{~N}} \mathrm{~m}_{\mathrm{i}} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{\mathbf{i}}\right)$.

It follows that

$$
K=\frac{1}{2} \omega \cdot L .
$$

With $\boldsymbol{\omega}$ having all the components, the kinetic energy is written as,

$$
\mathrm{K}=\frac{1}{2}\left(\mathrm{I}_{x x} \omega_{x}^{2}+\mathrm{I}_{\mathrm{yy}} \omega_{y}^{2}+\mathrm{I}_{z z} \omega_{z}^{2}+2 \mathrm{I}_{\mathrm{xy}} \omega_{x} \omega_{y}+2 \mathrm{I}_{\mathrm{yz}} \omega_{y} \omega_{z}+2 \mathrm{I}_{x z} \omega_{x} \omega_{z}\right)
$$

The Physical Pendulum

$$
\tau=I \alpha . \quad-l W \sin \phi=I_{a} \ddot{\phi}
$$

Making the small angle approximation,

$$
\begin{gathered}
I_{a} \ddot{\phi}+M \lg \phi=0 . \\
\phi=A \cos \omega t+B \sin \omega t, \quad \text { where } \omega=\sqrt{M l g / I_{a}} .
\end{gathered}
$$

By the parallel axis theorem we have $I_{a}=I_{0}+M l^{2}$

$$
\begin{gathered}
k=\sqrt{\frac{I_{0}}{M}} \quad I_{0}=M k^{2} \\
\quad \text { so that } \quad \omega=\sqrt{\frac{g l}{k^{2}+l^{2}}}
\end{gathered}
$$

The simple pendulum corresponds to $k=0, \omega=\sqrt{g / l}$,

$$
\begin{aligned}
T=\frac{2 \pi}{\omega} & =2 \pi \sqrt{\frac{\left(k^{2}+l^{2}\right)}{g l}} \\
& \text { For a bar pendulum: } k=\sqrt{\frac{L^{2}+b^{2}}{12}}
\end{aligned}
$$

Angular Impulse and Change in Angular Momentum

If there is a total applied torque $\overrightarrow{\boldsymbol{\tau}}_{S}$ about a point S over an interval of time $\Delta t=t_{f}-t_{0}$, then the torque applies an angular impulse about a point S, given by

$$
\overrightarrow{\mathbf{J}}_{S}=\int_{t_{0}}^{t_{f}} \overrightarrow{\mathbf{t}}_{S} d t
$$

Because $\overrightarrow{\boldsymbol{\tau}}_{S}=d \overrightarrow{\mathbf{L}}_{S}^{\text {total }} / d t$, the angular impulse about S is equal to the change in angular momentum about S,

$$
\overrightarrow{\mathbf{J}}_{S}=\int_{t_{0}}^{t_{f}} \vec{\tau}_{S} d t=\int_{t_{0}}^{t_{f}} \frac{d \overrightarrow{\mathbf{L}}_{s}}{d t} d t=\Delta \overrightarrow{\mathbf{L}}_{S}=\overrightarrow{\mathbf{L}}_{S, f}-\overrightarrow{\mathbf{L}}_{S, 0} .
$$

