Simulating thermally activated processes using metadynamics technique: Dissociation of gas-phase carbonic acid

Padma Kumar Padmanabhan Department of Physics Indian Institute of Technology Guwahati

<u>Plan of the talk</u>

Introduction

- o Molecular Dynamics (MD): Classical & ab initio
- Simulating Thermally Activated Processes (Rare Events)
 - o Metadynamics technique (MTD)
 - o Particle in 1-D potential
 - o Conformational Changes of H₂CO₃
 - o Dissociation of Carbonic Acid, $H_2CO_3 \Rightarrow CO_2 + H_2O$

Molecular Dynamics (MD) Basics

MD: A technique to recreate the natural atomic motion in a computer!!!

□ Calculate using Newton's Law,

$$F_{ij} = -\nabla U_{ij}$$
$$F_i = \sum_{j \neq i} F_{ij}$$
$$a_i = F_i / m_i$$

□ Integrate the equations of motion

$$v(t + \Delta t) = v(t) + \Delta t \frac{f(t)}{m}$$
$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2m}\Delta t^2$$

Structural Model Periodic Boundary Conditions

• Better schemes available! Velocity Verlet, Predictor correction

Compute statistical and dynamical properties from stored trajectories

Classical Vs ab initio MD...

⊖ Inter-Atomic Potentials -the important ingredient!

Classical MD: uses "pre-defined" potentials

- Lennard-Jones (6-12), $U(r_{ij}) = 4 \epsilon ((\sigma/r_{ij})^{12} (\sigma/r_{ij})^6)$
- Born-Mayer-Huggins, $\mathcal{U}(r_{ij}) = \frac{q_i q_j}{r_{ij}} + A_{ij} \exp(-r_{ij}/\rho_{ij}) \frac{C_{ij}}{r_{ij}^6} \frac{D_{ij}}{r_{ij}^8}$
 - Parameters are "tuned" to reproduce experimental data!
 - Quality Matters! Transferability not guaranteed!
- □ ab initio MD: computes potentials "on the fly"
 - Density Functional Theory (DFT)
 - GS e⁻ wavefunctions for every atomic configuration, x_i(t), y_i(t), z_i(t)
 - Plane wave basis sets
 - Hellmann-Feynmann Forces

All within the Born-Oppenheimer Approximation,

Trajectories are still Newtonian!

ab initio (Car-Parrinello) MD

Advantages Over Classical MD:

- © Free of empirical inputs
- ③ Many body interactions and atomic polarizabilities are accounted for!
- © Capable of describing chemical changes of matter

including the making and breaking of chemical bond

Disadvantages:

- [⊗] Computationally expensive
- Small system size (few hundred atoms/few hundred electrons)
- Short duration (~few tens of picoseconds) of runs

Too short to study many (activated-) physical and chemical processes ("rare events") in nature!!

- The need for improvements!

Simulating Chemical Reaction

$A+B \Leftrightarrow C+D$

<u>Metadynamics – The idea!</u>

Laio & Parrinello, PNAS, 99, 12562 (2002).

$$\mathcal{L}_{\mathcal{MTD}} = \mathcal{L}_{\mathcal{CP}} + \frac{1}{2}\mu\dot{s}^2 - \frac{1}{2}k(S(R) - s)^2 - V(t, s)$$
S(R)- collective (dynamical-) variable
$$v(t,s) = H\sum_{ti \le t} \exp\left\{-\frac{(s - s(ti))^2}{2\Delta s^2}\right\}$$
Fictitious particle
$$V(t,s) \bigoplus_{ti \le t} feels$$

$$\Delta E > kT$$

$$\Delta E > kT$$

$$Added Gaussians$$

$$\epsilon \text{ Reaction coordinate/Order parameter, S}$$
Self (avoiding) discouraged walk!!
Indian Institute of Sechnology Gausahati

Choice of Collective Variables

The choice of the collective (dynamical-) variable, *S*(*R*):

- distances/bond lengths
- bond angles
- smooth 'coordination numbers' $S(R_{ii}) = (1 - (R_{ii}/R_0)^6) / (1 - (R_{ii}/R_0)^{18})$

• dihedral angles

Metadynamics: An illustration

Particle in 1-D potential: $U(x) = -6.2 x^2 + 1.5 x^3 + 1.7 x^4$

m=10; kT=1; γ =5; ρ =15.81; dt=1; ξ =(0-1); H=0.05-0.6; Δ s=0.05-0.6; t_{i+1} - t_i =300;

...MTD Illustration: Evolution of the effective potential

... MTD Illustration: Free Energy Estimation

...MTD Illustration: Convergence of estimates with H & AS

Conformations of Carbonic Acid

These conformers are related by changes in the two **O=C–O–H** dihedral angles, $\Phi_1 \& \Phi_2$ (Hence **good** CVs (S(R))!

Height and width of Gaussians: W=0.627 kcal/mol; $\Delta s \sim 10^{\circ}$,

Interval at which Gaussians added: 20 MD steps. (a bit hard driven!)

Potential energy surface for conformational changes...

Dissociation of H₂CO₃

$H_2CO_3 \Leftrightarrow H_2O + CO_2$

Trans-Trans

Cis-Trans

Cleaving Chemical bonds employing **coordination number** as the CV $S(\mathbf{R}_{ii}) = (1 - (\mathbf{R}_{ii}/\mathbf{R}_0)^6) / (1 - (\mathbf{R}_{ii}/\mathbf{R}_0)^{18}$

o Who is most / least stable against dissociation to carbon dioxide ?

O What's the mechanism?

Free- energy surfaces for dissociation of the Cis-Trans(2) - H₂CO₃ in gas-phase

Kumar et al. J. Chem. Phys. 126, 204315 (2007)

<u>Mechanism of H₂CO₃ dissociation in gas-phase</u>

Mechanism of H₂CO₃ dissociation in gas-phase

The real space trajectory. (Superimposed snap shots from metadynamics)

The meta-space trajectory.

Hill Tuning

Good Convergence of Free- energies with Hill Height Kumar et al. J. Chem. Phys. 126, 204315 (2007)

Conclusion

Metadynamics Offers a very promising technique to study activated physical/chemical processes!

Advantages:

- Efficient exploration of reaction pathways
- \bigcirc Provides insights in to the mechanism
- C Allows (Landau-) Free Energy Estimation
 - require less physical intuition
 - finite temperature effects included
- Comes with *little* additional computational overhead

Disadvantage:

Contemporal information/Kinetics is unavailable!

<u>Acknowledgement</u>

Collaborators:

Prof. R. J. Kirkpatrick (UIUC/MSU)

Dr. A. G. Kalinichev (UIUC/MSU)

Mr. Pritam Ganguly IITG

Discussion: Dr. Nisanth Nair (IITK)

Dr. Axel Kohlmayer (PSU)

Funding:Department Of Energy (DOE), USA.Infrastructure:IITG, NCSA @ UIUC, NERSC, SDSC, PSC – USASoftware:CPMD, VMDThanks: Prof. S. B. Santra & Organizers of SCMP

Thank you!

Thank you!

Metadynamics investigation of

Reactivity of Carbonate

A. Ridgwell, R.E. Zeebe / Earth and Planetary Science Letters 234 (2005) 299-315

•Ridgwell & Zeebe, Earth and Planet. Sci. Lett., 234, 299 (2005).

Significance:

Aqueous Carbonate species: H_2CO_3 , HCO_3^- , CO_3^{2-} , CO_2 (aq.), important in many chemical, biological, geological processes. Particularly, **Global Warming** and **CO₂ sequestration**

System-Setup

Car-Parrinello MD:

- A single H_2CO_3 in cubic box of 11.0 Å.
- DFT: GGA, BLYP functional employed.
- Ultra soft pseudo potentials (Vanderbilt) used.
- Plane wave cut off used: 35 ryd.
- $\mu e = 600 \text{ a.u}$; fictitious KE of $e^- 0.0018 \text{ a.u}$.
- Time step used: ~ 0.1 fs.
- Ions and electrons are thermostated (Nose-Hoover method).
- All simulations are carried out at ~ 315 K.
- Over all translation and rotation are corrected for at every MD step.
 Kumar & Marx, *Phys. Chem. Chem. Phys.*, <u>8</u>, 573 (2006).

Indian Institute of Technology Guwahati