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Binary clusters, notably salt clusters with their combination of attractive and repulsive long- 
range forces, exhibit structural and dynamical behavior different from that of 
homogeneous clusters. The melting and freezing, nonwetting, and the complexity of the 
potential surface of (KC1)33 are used to make the comparison. A new method to estimate the 
density of configurational states is described and applied to the evaluation of thermodynamic 
properties of (KC1)3,. In particular, with this new method we compute for several tempera- 
tures the fraction or probability, P(@), of clusters vibrating around a configuration with 
minimum energy 4. The behavior of P(@) with temperature T is indicative of a coexistence 
of solidlike and liquidlike forms of (KCl),, for a range of temperatures. The input data re- 
quired by this new method can be obtained from constant temperature molecular dynamics 
simulations. 

1. INTRODUCTION 

Theoretical work on clusters has concentrated heavily 
on homogeneous clusters of spherically symmetric species 
modeled by simple Lennard-Jones’-’ or Morse* potentials. 
On the basis of these studies a theoretical framework has 
been developed’-l3 that explains and predicts well the be- 
havior of clusters. In its early stages, the generality of this 
maturing framework was restricted by the lack of diversity 
of clusters studied. However, the list of different clusters 
studied has grown long and varied, heterogeneous clusters 
(alkali halides, 1625 rare gases doped with a large organic 
molecule,26’27 and rare gases doped with alkali halides2’), 
alkali2’ and transition metals,3c34 molecular van der Waals 
clusters,35-38 and nonmetal39 clusters. (For an extensive 
collection of papers on a variety of cluster topics see Refs. 
40 and 41). In spite of this impressive list there still is 
much to be learned about the variability of cluster behav- 
ior. In particular, little is known from experiments about 
the phase coexistence behavior of clusters. Experiments 
germane to much of the theoretical work, on pure, size- 
selected rare gas clusters, would be extremely difficult. 
However, relevant experiments on clusters that are more 
tractable both experimentally and for theory, such as alkali 
halides, may be possible. 

Alkali halide clusters are good model systems because 
they are amenable to both theory and experiment. On the 
theory side, a realistic, pairwise additive potential describes 
them well. Studies have shown that more exact alkali ha- 
lide potentials give essentially the same statics as does the 
simple Born-Mayer potential. 15*25*42 Work on alkali halide 
clusters by Martin’G20 and Welch et al. i4,i5 focused on the 
geometries and’ vibrational properties of small and 
intermediate-size clusters. Luo, Landman, and Jortner2i 
investigated the dynamics of three NaCl clusters, ( NaC1)4, 
(NaCl) 16, and (NaCl) ios. They found that the behavior of 
NaCl clusters depends strongly on the size of the cluster; 
small NaCl clusters exhibit simple isomerization dynamics, 
large NaCl clusters exhibit freezing/melting behavior sim- 

ilar to rare gas clusters and intermediate size NaCl clusters 
exhibit dynamics that are a combination of the small and 
large size limiting cases. The isomerization kinetics of 
( NaCl), have been studied in further detail by Heidenreich 
and co-workers.22P23 

Recently, we presented a fairly comprehensive investi- 
gation of small KC1 clusters, namely, (KCl), and 
(KCl)5.24 In this study the cluster dynamics were ex- 
plained by relating them to the features of the underlying 
multidimensional potential energy surface. To complement 
and compare this study of small KC1 clusters we under- 
took the study of (KCl) 32, which we chose for a few spe- 
cific reasons. First, (KCl)33 has a simple symmetric 
4X 4 X 4 ground state structure, making it easy to locate. 
Second, if we consider the symmetric 2n X2n X2n KC1 
clusters to be alkali halide magic number clusters then 
(KCl)33 is the second smallest magic number cluster and 
we can compare it to the smallest magic number cluster 
(KCl)& Magic number clusters are important experimen- 
tally because their conspicuous stability, compared to their 
nearby size neighbors, may mean they can be prepared in 
high enough abundance to facilitate experiments. Lastly, 
(KCl) 32 is large enough to have distinct surface and inte- 
rior particles but at the same time it is not too large to 
make potential energy minimizations computationally dif- 
ficult. (Many potential energy minimizations must be done 
in order to map a potential surface, so they must be cheap 
and relatively quick to complete.) 

In the next section we briefly explain the methods used 
in this study. In Sec. III we present and discuss our results, 
dividing them into three subsections: (A) phase behavior, 
(B) nonwetting behavior, and (C!) density of configura- 
tional states. In Sec. III C we describe a new method to 
estimate the density of configurational states and compare 
it with simulation results. Lastly, in Sec. IV we make a few 
concluding statements regarding the interpretation of the 
results. 
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II. METHODS 

(KCl)32 was studied by a combination of four tech- 
niques: constant energy and constant temperature molecu- 
lar dynamics (MD), potential energy surface minimiza- 
tions, and analytic statistical mechanical theory. The 
intention of the analytic theory was to derive and apply an 
expression for the density of configurational states which 
could be evaluated using simulation data as the input. The 
MD method is well known and has been explained many 
times elsewhere,43A5 so we will only discuss the main 
points particular to our study. 

The velocity form of the Verlet propagation algo- 
rithrnM was used to integrate the constant energy MD 
equations of motion. A time step of 3 x lo-l5 was required 
to conserve the energy from step to step to at least five 
significant digits and also to prevent the energy from drift- 
ing over time. Constant energy trajectories of lo5 times 
steps, preceded by an equilibrium period of lo3 time steps, 
were run to calculate quantities such as the average vibra- 
tional temperature, relative root-mean-square bond length 
fluctuation 6, mean square displacement (MSD), and the 
velocity autocorrelation function. For a thorough explana- 
tion of these quantities see Ref. 24. 

The Nose equations of motion46’47 were used for the 
constant temperature MD. The forces in the Nose method 
are velocity dependent, so it is necessary to use a propaga- 
tion algorithm that calculates accurately both the configu- 
rations and the velocities; a sixth-order Gear predictor- 
corrector propagator43’48 with a time step of 3 x lo-l5 was 
used to accomplish this. For this study dynamical quanti- 
ties were calculated only with constant energy MD. Previ- 
ous work on Ari3 compared dynamical quantities calcu- 
lated with constant temperature simulations, both Monte 
Carlo and MD, with constant energy MD results and 
found enough agreement to infer that the conclusions were 
not dependent on the ensemble.49 

Potential surface minima were located with the 
steepest-descent50’5’ (SD) and the conjugate gradient52 
(CG) minimization technique. In the SD method one mo- 
mentarily stops the MD, effectively sets the kinetic energy 
to zero, and then immediately solves the differential equa- 
tion 

dr 
;ir;= -V@(r) 
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the mathematics and necessary FORTRAN code for the 
CG method, see Ref. 52. 

To locate the minima of the (KCl) 32 potential surface 
the CG method was used almost exclusively because it 
proved to be more efficient than the SD method. Neverthe- 
less, the SD method was applied to quenched geometries 
reached by CG, and also both minimization techniques 
were applied to some of the same starting geometries, to 
check the accuracy or at least the consistency of the CG 
method. Occasionally from the same high-energy starting 
geometries the SD and CG methods located different min- 
ima. Such behavior is not surprising for a highly convo- 
luted surface. This presents no problems; rather, for a sur- 
face with a large number of minima, finding the individual 
minima is less important than obtaining a large statistical 
sample of minima, including some that are close in config- 
uration space. This is an important point that distinguishes 
the coarse-grained approach one must adopt when study- 
ing a large cluster such as ( KCl) 32 from the fully detailed 
view we can use with small clusters such as (KC1)4 or 
WC1)5. 

The Born-Mayer53’54 type potential used for this study 
is the same one that we used previously” to study (KC1)4 
and ( KC1)5 and was also used for many other computer 
simulation studies of alkali halides,‘“23 

until a potential minimum is found. In the CG method, at 
each incremental step the potential energy of the system is 
minimized along 3N-6 mutually conjugate, “noninterfer- 
ing” directions. Noninterfering means that the minimiza- 
tions performed along each of these conjugate directions 
are independent of all the others. That is, the minimization 
along one direction does not spoil the minimizations along 
all the other conjugate directions.52 The minimization pro- 
cess (either SD or CG) is entirely independent of the MD. 
The MD trajectory is not altered by the minimization pro- 
cess; it merely provides a distribution of starting configu- 
rations for the chosen quench process. For a discussion of 

@= z *ij= C F+AijeXp( -rij/p) ; (2) 
i<j i<j [ [J 1 

qi and qj are the charges on the ions i and j, and rij is the 
distance between ions i and j. The first term is a Coulomb 
interaction and the second repulsive term approximates the 
effects of the Pauli exclusion forces55 on the filled electronic 
shells of the ions, as they unshield the nuclear repulsions. 
The values of the constants Aij (A++=1555.21 eV, A+- 
=1786.91 eV, A--=1924.80 eV) and p (0.337 A) are 
those given by Tosi and Fumi.53 The value of Aij depends 
upon the particular interacting ions whereas p does not 
and p and Aij are assumed to be independent of the number 
of particles in the cluster. Other, more elaborate model 
potentials for alkali halide clusters have been proposed and 
successfully employed in simulation studies. For example, 
multipole or dispersion terms can be appended to the rigid 
shell model potential to account for ion polarization ef- 
fects.i5 For the objectives of this study, the simple rigid 
shell potential was entirely adequate when judged against 
the added complexities and increased computation time 
incurred by using a more exact potential. Including polar- 
ization terms in the potential would require solving a set of 
linear equations at each time step of the simulation in order 
to calculate the instantaneous dipole moments of the ions. 

Ill. RESULTS 

A. Freezing and melting of (KC+ 

The phase behavior of many different clusters has been 
extensively discussed’.9*‘3’24 so only a brief review will be 
given here. It is well established theoretically and experi- 
mentally35’38 that some clusters can exhibit distinguishable 
solidlike and liquidlike states. A cluster passes between 
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solidlike and liquidlike forms in a manner that is the small- 
system analogue of the freezing/melting transition of bulk 
matter. We emphasize the distinction between a “phase 
change” of a cluster and a phase transition of bulk matter. 
In bulk matter the freezing/melting transition occurs 
sharply at a single temperature for each pressure, whereas 
the ratio of liquidlike to solidlike forms of an ensemble of 
a given kind and size of clusters changes gradually within 
a finite band of temperatures. In some clusters this effect 
manifests itself as unequal limiting temperatures for freez- 
ing and melting, Tf and T,, respectively, where Tf is the 
lower temperature limit for the stability of the liquidlike 
cluster and T, is the upper temperature limit of stability 
for the solidlike cluster. Although there is theoretical evi- 
dence56’57 that these limits of stability can be extrapolated 
to the bulk, the macroscopic number of particles conceals 
this from observation, both experimentally and in simula- 
tions. In this respect, the observable details of the phase 
behavior of clusters differs from that of the bulk. 

saddle. This is quite unlike the rare gas clusters,1’7’58 and 
even bulk5’ rare gases, for which the lowest excited state is 
reached directly from the ground state by the creation of a 
simple point or surface defect. It is of course very possible 
that a low minimum directly connected to the rocksalt 
minimum might exist for (KCl) 32 but we did not find any. 
In fact, we checked this by systematically creating singly 
defected crystalline structures. This was accomplished by 
manually removing an ion from a comer of the perfect 
rocksalt microcrystal, placing it on a face or edge, and then 
subsequently quenching the fabricated structure. Placing 
the defect ion on a face produced a structure with energy of 
$= -3.3379 eV/ion and on an edge I#J= -3.3391 eV/ion. 
Some of the other minima that are directly connected to 
the ground state were identified by simulations, but they 
also all had energies greater than -3.3534 eV/ion. 

Our approach here, as done previously,‘“,‘3*24 is to ra- 
tionalize the thermodynamics and dynamics of (KCl) 32 by 
relating the simulation results to the structure of the un- 
derlying potential energy surface. The structure of a sur- 
face is mapped by determining both the geometry and to- 
pology of the surface. Geometry refers to the minima and 
saddle point energies and topology refers to the connectiv- 
ity of the surface, i.e., which saddles connect which min- 
ima. In previous studies on small clusters, and some as 
large as Ar55, ‘J’ the objective was to map the potential 
surface in as fine detail as possible. However, for large 
clusters, like (KCl),,, it is neither feasible nor sensible to 
describe the potential surface in meticulous detail. Besides 
the global minimum, only a gross understanding of the 
surface is necessary. An adequate coarse-grained under- 
standing constitutes enough information to calculate aver- 
age properties. It is not necessary to find all (or most) of 
the minima and saddles on the potential surface as we did 
for ( KCl)4 and (KCl) 5. 

The ground state configuration of (KCl),, shown in 
Fig. 1 (a) has a cubic rocksalt structure identical to the 
bulk potassium chloride crystal and the minimum energy 
of the ground state configuration, #= -3.3703 eV/ion, is 
96% of the bulk crystall binding energy. In this paper 4 
will represent the quenched energy of a stable structure. 
The next higher minimum above the ground state that we 
found was at I$= -3.3534 eV/ion, creating an energy gap 
A of approximately 0.017 eV/ion. We say approximately 
because with such a complicated surface it is impossible to 
be absolutely certain that one has found a specific mini- 
mum, such as the lowest excited state configuration. Nev- 
ertheless, with the numerous anneals and quenches that we 
performed we can be highly confident that the lowest ex- 
cited state that we found is at least very close to the actual 
one. This structure, which is shown in Fig. 1 (b), is rela- 
tively quite stable because it attains the stable 3 X4X 5 
rocksalt structure with the four remaining ions situated in 
a line parallel to an edge of the rectangle. From this struc- 
ture we can see that it is unlikely that this configuration is 
directly connected to the ground state by a single rank-one 

Above the energy gap A the spectrum of locally stable 
structures is essentially a continuous function of energy, 
because the surface has so many minima. The best method 
we found to describe the spectrum of local minima is to 
separate the stable minima into four ranges. The lowest 
range consists of just the microcrystal ground state. The 
next range of energies is associated with minima corre- 
sponding to structures that are mostly regular and rock- 
saltlike except for a few defects; we term these structures 
crystal-like to distinguish them from the perfect micro- 
crystal. The third energy range inciudes what we call non- 
wetted structures; the structures in this range are partly 
regular, rocksaltlike and partly highly disordered. We will 
say more about nonwetted structures below. The highest 
energy range contains a very large collection of minima 
that have completely disordered (amorphous) equilibrium 
configurations. There is no sharp physical separation, ex- 
cept for the energy gap A, that delineates these energy 
ranges. As a result, any choice of energy limits for these 
ranges is arbitrary and so we will not attempt to define 
them strictly. Representative structures we found for each 
of these four energy ranges are shown in Fig. 1. The radial 
distribution functions for each of the particular structures 
shown in Fig. 1 are shown in Fig. 2. 

We chose to define these energy ranges in this way 
because there is a correlation between the energy of an 
inherent structure and its extent of order. This is shown 
graphically in Fig. 3. We can explain this graph best by 
describing how it was constructed. A collection of 
quenched structures, about 100, was accumulated and each 
one was visually classified based on its apparent extent of 
crystallinity. We viewed each structure on the computer; if 
the structure was devoid of order it was classified into the 
amorphous category, if it was very ordered then it was put 
in the category containing crystal-like structures, and if it 
was only partially ordered, which usually meant that at 
least one side or end of the cluster was rocksaltlike, we 
classified it as nonwetted. This was all done without prior 
knowledge of the energy of the structures. After each 
structure was classified it was paired with its energy. 
Lastly, a histogram plot was generated from the energies in 
each category except for the microcrystal category. Notice 
in Fig. 3 the clear separation between the distribution of 
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(4 

(d) 

(b) 

FIG. 1. Five representative structures for ( KCl),,; ( ) a microcrystal, I#= -3.3703 eV/ion, (b) lowest excited state configuration, += -3.3534 eV/ion, 
(c) crystal-like structure, 4= -3.3465 eV/ion, (d) nonwetted structure, 4= -3.3254 eV/ion (e) amorphous structure, #= -3.2993 eV/ion. 
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quenched energies for the amorphous and crystal-like cat- 
egories. As anticipated the distribution of minima energies 
for nonwetted structures falls into a range intermediate 
between the crystal-like and amorphous ranges, and not 
surprisingly overlaps both of them. 

The caloric curves derived by MD for (KCl)s, are 
shown in Fig. 4. The kinetic temperature of a cluster at 
constant energy is defined by the equipartition theorem for 
a system with 3N-6 vibrational degrees of freedom. For the 
constant temperature caloric curve the mean total energy E 
of the caloric curve is obtained as an average over a con- 
stant temperature trajectory.46y47 The flat region around 
750 K in both caloric curves marks the onset of melting in 
(KC!1)s2 The flat region is a manifestation of the sudden 
change in the regions of the potential surface that the clus- 
ter explores.g’““3’24 At low energies (temperatures) below 
the onset of melting, or of any kind of rearrangements, the 
cluster vibrates only around the most stable isomer. At 
some higher energy the cluster explores regions of the sur- 
face unexplored at lower energies. If the new regions differ 
significantly in potential energy from the lowest energy 
region, and if there is a time scale separation between in- 
ter-well and intrawell motions, then this potential energy 
difference is revealed by a flat region or loop feature in the 
caloric curve.4’11 Note, when we refer to a temperature we 
mean either the temperature of a constant temperature tra- 
jectory or the long-time average kinetic temperature of a 
constant energy trajectory. 

A multidimensional potential energy surface can be 
partitioned into distinct contiguous regions. Each region is 
the catchment basin for a single potential minimum (or in 
rare cases, a saddle). The geometric structure of a potential 
minimum is called the inherent structure of that basin.5o*51 
At any temperature Teach basin has an occupation prob- 

FIG. 1. (Continued) 
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ability whose logarithm is the entropy associated with that 
basin. At a less prescribed level, at temperature T, the set 
of basins with minimum energy 4 * 84 has an occupation 
probability and a corresponding entropy. We express this 
probability distribution function as P( 4, T), where 4 is the 
minimum energy of a catchment basin. Thus P( #J, T) is the 
normalized probability density, at T, of finding the cluster 
vibrating within any basin with minimum energy 4. Small 
clusters with a discrete number of permutationally non- 
equivalent basins, have a discrete P(4,T) that, for most T 
must be represented by the complete set of occupation 
probabilities, a particular probability for each basin. Bulk 
systems with an enormous number of basins, eon the order 
of eN for- a system of N particles, have a continuous 
P(&T), which we conjecture is a sharply peaked function 
of 4 for each fixed T. If P($,T) is sharply and uniquely 
peaked then the entire distribution can be represented by a 
single number $,, the energy associated with the peak 
probability. The more closely P($,T) resembles a delta 
function the more powerful is this representation. Because 
the energy 4, of the peak probability depends on the tem- 
perature, we write it as 4,(T). With respect to the shape 
of the caloric curve the crucial issue is how P($,T) 
changes with T. 

When in its solidlike form ( KCl) 32 vibrates within the 
global minimum basin, thus I$,,, = (Pcrystal = - 3.3703 eV/ 
ion. At the onset of melting (KCl),, begins to access the 
basins of its locally stable isomers. However, from simula- 
tions we found that the cool liquid does not spend much 
time around its low-lying local minima, but instead in ba- 
sins with (p- - - 3.3 13 eV/ion. Thus when (KCl) 32 melts its 
P($,T) function changes from just a delta function cen- 
tered on the energy of the global minimum to a distribution 
that has significant probability for #J= - 3.3 13 eV/ion. 
When (KCl) 32 passes out of its global minimum potential 
basin it occupies the high-energy local minima instead of 
the very low-energy local minima because there are so 
many more high-energy minima than there are low-energy 
local minima; entropy wins out over energy. This fairly 
sharp change in P($,T) is the source of the flat region’in 
the caloric curve. Although this change is fairly sharp, it 
nonetheless must still be continuous as evidenced by the 
rounding of the transition region of the caloric curve [Fig. 
4(a)]. A rounded transition region in the caloric curve is 
suggestive of a solidlike/liquidlike phase coexistence.60 We 
discuss this topic more below. 

A microscopic quantity used to locate the melting 
point for a cluster is the relative root-mean-square (rms) 
bond length fluctuation (6) curve. The rms bond length 
fluctuation curve as a function of energy 6(E), or as a 
function of temperature S(T), is essentially the standard 
deviation of the interparticle distances in units of the mean 
bond length, averaged over a MD trajectory. The Linde- 
mann criterion6’P62 states that melting sets in when 8~0.1; 
S is a sensitive function of cluster rearrangements, so a 
sharp increase in 6 signals the onset of rearrangements 
responsible for melting and liquidlike behavior. The S(E) 
and 6(T) curves are shown in Fig. 5. At low temperatures 
(energies) 6 is small because the cluster lingers in the 
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ground state and only undergoes solidlike, vibrational mo- 
tions. At high temperatures (energies) above the sharp 
increase in 6, (KCl)32 passes rapidly among a huge num- 
ber of minima and is liquidlike. 

Quantities such as the caloric curve, 6(T) or S(E) are 
useful for locating the onset of melting of a cluster. Dy- 
namical quantities such as the mean square displacement 
(MSD), G-%>), or the power spectrum I(o) are useful 
for establishing the state of a cluster for a given tempera- 
ture and sample trajectory segment. The slope of (3(t) > is 
proportional to the diffusion constant. At a temperature 
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FIG. 2. Radial distribution functions of the five structures shown in Fig. 
1; the designations (a)-(e) ,correspond to the similarly labeled structures 
in Fig. 1. 

below the sharp increase in 6 the MSD curve shown in Fig. 
6 has nearly zero slope, which is evidence that the cluster 
is solidlike. The power spectrum, the Fourier transform of 
the velocity autocorrelation function, shown in Fig. 7(a), 
similarly demonstrates that the cluster is solidlike at low 
energies. The power spectrum in Fig. 7(a), although dif- 
fuse and broad in general shape, has negligible intensity at 
low frequencies, near o=O, and pronounced peak struc- 
ture at higher frequencies. The negligible low frequency 
intensity means that soft, diffusive, liquidlike modes are 
absent. The pronounced peak structure means that the 
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(a) 

(b) 

-3.335 -3 

Q, (eV/ion) 

FIG. 3. Histograms of the distribution of quenched energies for the dif- 
ferent categories of locally stable structures described in the text: (a) 
crystal-like structures, (b) nonwetted structures, and (c) amorphous 
structures. 

cluster is undergoing some harmonic cold-molecule-type 
motions. Both of these qualities of I(w) are cogent dem- 
onstration that the cold cluster is solidlike. 

power spectrum [Fig. 7(b)] at E=-3.05 eV/ion is very 
broad, diffuse, and displays a large intensity at w =O, which 
also points out that there is considerable diffusive, liquid- 
like motion occurring. 

The onset of melting means that the total energy is 
high enough above the ground state energy barriers for 

The liquidlike phase of (KCl) 32, the second KC1 magic 

(KCl)32 to fmd a path out of its global minimum, and 
number cluster, is significantly different from the liquidlike 
state of the first KC1 magic number cluster, (KCl),. The 

explore many high-lying potential wells, in the time of an interwell motions of (KCl), are highly collective in char- 
average MD trajectory. The slope of the MSD (Fig. 6) at acter and therefore particle interchanges in (KCl), occur 
an energy above the sharp increase in S(E), E= - 3.05 only through a multistep rearrangement process.24 This 
eV/ion, is nonzero and large indicating the presence of restricts the rate of diffusion and makes the liquidlike state 
diffusive, liquidlike motions. From the slope of the MSD at of (KCl), appear stiff compared to the liquidlike state of 
E= -3.05 eV/ion we can calculate the self-diffusion coef- rare gas clusters. In comparison, the liquidlike state of 
ficient D of liquidlike (KCl) 3P The self-diffusion coeffi- (KCl),, is more fluidlike and less stiff, with interwell mo- 
cient of (KCl)33 at E= -3.05 eV/ion is actually larger 
than the self-diffusion constant in bulk63 molten KC1 well 

tions that are less collective than those for (KCl)& We 
inferred this from the large self-diffusion constant for 

above the bulk melting temperature (see Table I). The (KCl)32, the broad diffuse shape of the power spectrum, 
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FIG. 4. (a) Constant energy caloric curve; the open circles are the results 
of one caloric curve heating cycle and the filled circles are the average of 
six separate cycles, (b) constant temperature caloric curve; the open 
circles are the results of one caloric curve heating cycle and the filled 
circles are the average of five separate cycles. “One caloric curve heating 
cycle” means that the final coordinates and velocities of the MD trajec- 
tory at each energy (temperature) were the initial conditions for the MD 
trajectory at each successively higher energy (temperature). 
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FIG. 6. Mean square displacement for (KC1)s2 at four energies; labeling 
from bottom to top, E= -3.20 eV/ion (solidlike), E= -3.115 eV/ion 
(melting region), E=-31107 eV/ion (cold liquidlike) and E=-3.05 
eV/ion (liquidlike). 
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FIG. 5. (a) Constant energy root-mean-square bond length fluctuation 
curve 6(E); the open circles are the results of one root-mean-square bond 
length fluctuation curve heating cycle and the filled circles are the average 
of six separate cycles, (b) constant temperature root-mean-square bond 
length fluctuation curve S(T); the open circles are the results of one 
root-mean-square bond length fluctuation curve heating cycle and the 
filled circles are the average of five separate cycles. “One root-mean- 
square bond length fluctuations curve heating cycle” means that the final 
coordinates and velocities of the MD trajectory at each energy (temper- 
ature) were the initial conditions for the MD trajectory at each succes- 
sively higher energy (temperature). 
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and also from looking at MD movies on the computer. In 
a few tens of time steps the liquidlike dynamics of ( KCl) 32 
carry it from one inherent structure to another, consider- 
ably different structure. 

The transition between the solidlike and liquidlike 
phases of (KCl) s2 is sharp in the sense that, during a par- 
ticular MD trajectory, if the cluster transforms from its 
solidlike phase to its liquidlike phase it rarely, if ever, 
changes back into its solidlike phase. Extensive constant 
energy and temperature simulations revealed only a single 
case (constant T MD) in which (KCl) 32 changed from its 
high-potential energy, liquidlike form back into its low- 
potential energy, solidlike form. In this instance, the return 
stay in the solidlike form was relatively short and more- 
over, once (KCl),, eventually transformed back into its 
liquidlike form it remained liquidlike for the duration of 

1 (4 

(W 
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Frequency 

FIG. 7. Power spectra (a) E=-3.275 eV/ion (solidlike) and (b) E 
= --3.05 eV/ion (liquidlike). The units on the vertical scale are arbitrary 
and the frequency units on the horizontal scale are lOI* s-‘. 
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TABLE I. Representative self-diffusion constants D. The numbers for 
bulk KC1 were calculated using Eq. (1) in Ref. 63 and the values for 
(KCl), were taken from Ref. 24. 

B. Nonwetting 

Temperature D Melting temperature 
(K) ( lo5 cm*/s) 09 

Bulk KC1 1193 9.4a 1049 
(KCI),, 894 13.9 -750 
WCU, 1109 0.61 -700 

“Average of the individual cation and anion self-diffusion constants. 

the simulation (z 1.5 X lo6 time steps). Consistent with 
these findings is the sharp increase in S [Figs. 5(a) and 
5(b)], as calculated from a single MD cycle. In these 
curves S jumps sharply from its low value for the solid 
branch up to its high value for the liquid branch without 
displaying any intermediate values. The sharp increase in S 
suggests that once rearrangements commenced and 
( KCl) 32 melted, the cluster never transformed back into 
the solidlike phase and subsequently remained in it for any 
significant amount of time. Hence, we were unable to find 
any evidence for sustained dynamic coexistence of solidlike 
and liquidlike forms of (KCl),, in either constant energy 
or temperature MD simulations. This result is surprising 
since, as we stated above, the rounding of the transition 
region in the caloric curve for a finite system is suggestive 
of a solidlikefliquidlike phase coexistence. 

In contrast to (KC1)32, for small clusters, both rare 
gases 1V2*9,13 and alkali halides,24 S(E) displays intermediate 
values between the solidlike and liquidlike branches, and 
simulations reveal measurable equilibrium [liquid]/[solid] 
ratios over ranges of T. From these results it appears that 
the melting of (KC1)32, at least on the ns times scale of our 
simulations, resembles more a large finite system than the 
microscopic systems that exhibit a dynamic coexistence 
between distinct forms for a finite range of temperatures. 

The failure of (KCl)32 to exhibit any semblance of 
sustained dynamic phase coexistence is either a manifesta- 
tion of a sharp dependence of the [liquid]/[solid] equilib- 
rium ratio on T, a very long time scale for passage between 
the liquidlike and solidlike forms of (KCl)32, or a combi- 
nation of both of these effects. If the absence of dynamic 
coexistence of solidlike and liquidlike forms of (KCl) 32 is 
a consequence of very long passage times, then in ex- 
tremely long simulations we would expect to observe re- 
peated passages of ( KCl) 32 between its liquidlike state and 
its solidlike state, consistent with the recent analysis of the 
full phase diagram of the Ar3s cluster by Cheng et aI.& 

In general, phase coexistence occurs when there are 
two or more observable stable phases for a given complete 
set of thermodynamic variables. We distinguish two kinds 
of phase coexistence, dynamic and quasistatic. These terms 
are best defined in terms of an ensemble of systems exhib- 
iting one of these kinds of phase coexistence and with the 
two phases being solid and liquid. Consider a large ensem- 
ble of systems; the systems may either be microscopic or 
macroscopic, for now the distinction is not relevant. If at 
any instant, at fixed temperature and pressure, the ensem- 
ble is composed of systems that are each either entirely 
solid or entirely liquid, then we term this type of coexist- 
ence dynamic. We use the expression “dynamic coexist- 
ence” because if we employ the ergodic hypothesis and 
replace the ensemble with a single long-time trajectory, 
then along this trajectory the system will sometimes be 
entirely liquid and sometimes entirely solid. A single sys- 
tem then, exhibits a dynamic equilibrium similar to a mo- 
lecular isomeric equilibrium. Quasistatic coexistence oc- 
curs if, at any instant, almost all of the systems of the 
ensemble exhibit both solid and liquid phases that are in 
physical contact within each system. We call this type of 
coexistence “quasistatic” because both phases are observ- 
able in one sample system at the same instant of time. Bulk 
systems exhibit only quasistatic phase coexistence but clus- 
ters may exhibit both types of phase coexistence. 

If solid and liquid phases are in quasistatic coexistence 
then the coexistence can be manifested in one of two ways; 
the liquid melt either may “wet” the solid uniformly or it 
may not wet the solid. An example of quasistatic coexist- 
ence in clusters whose melt wets the solid occurs with 
Art4,, the third Mackay icosohedron, with a complete 
outer shell of atoms. Both computer simulations and ana- 
lytical theory33 have shown that the outer shell of atoms in 
Ar147 melts and becomes liquidlike at temperatures below 
the homogeneous melting temperature. The entire surface 
is, averaged over a few tens of vibrations, uniform and 
liquidlike and thus the liquid surface layer must “wet” the 
defect-free, inner solidlike core. 

Although (KCl) 32 apparently does not exhibit any dy- 
namic phase coexistence it does show a kind of simulta- 
neous phase coexistence in the form of structures [cf. Fig. 
1 (d)], both dynamic and quenched, that are simulta- 
neously partly solidlike (ordered) and partly liquidlike 
(disordered). The liquidlike portions do not wet the solid- 
like portions therefore we label structures that exhibit this 
behavior, “nonwetted.” We discuss the nonwetted struc- 
tures in the next section. 

The combination of the ionic nature of alkali halides 
and the density differences of their liquids and solids pro- 
duces enough repulsive interaction between the interacting 
solid and liquid surfaces that alkali halide crystals are not 
wet by the molten salts. In particular, the most common 
face, the { 100) plane, of the crystal is not wet by its melt.65 
Like the bulk alkali halides, (KCl) 32 also exhibits nonwet- 
ting behavior. The demonstration of nonwetting behavior 
in an alkali halide cluster was first apparent in an earlier 
study on (NaCl) io8.15 Figure 1 (d) is an example of a 
quenched, nonwetted structure. Notice how one part of the 
cluster is ordered and in the rocksalt structure, while the 
other portion, disordered and irregular, does not spread to 
uniformly cover the surface of the crystalline portion. 
Many quenched structures were viewed on the computer 
and not one exhibited the liquid portion spread onto the 
solidlike portions. The nonwetting behavior of (KCl),, is 
yet another example of phase phenomena that has both 
microscopic and macroscopic homologues. 
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In a MD study of the melting of alkali halide micro- 
crystals composed of 512 ions Amini and co-workers re- 
ported that at about 80 K below the freezing temperature 
the surface ions were found to diffuse and change place 
with their neighbors.66 As more energy is put into the sys- 
tem the diffusion propagates into the interior of the micro- 
crystal and the core ions begin to change places with their 
neighbors. However, Amini and co-workers do not reveal 
whether the surface melting spreads uniformly over the 
surface and wets the core ions or if the surface melting 
nonwets the core. 

C. Density of configurational states 

We have made several references to the density of con- 
figurational states G(4) for (KCI),,. Clearly, it would be 
useful if we could calculate it. The density of configura- 
tional states, G(4), is defined so that G(4)d4 is the total 
number of inherent structures with equilibrium energy 4 in 
the energy range d4 around 4. In G( 4) we are considering 
only the density of “configurational” states and are not 
counting the total density of states which includes, of 
course, a vibrational contribution. Also, G($) does not 
reflect the number of permutational isomers, [(N/2)!12, of 
each geometrically unique minimum. We present here a 
method to calculate G(#) that only requires easily ob- 
tained simulation data for its evaluation. The good degree 
of quantitative accuracy of this method is demonstrated by 
comparing a caloric curve derived using our method with a 
caloric curve based on a constant temperature simulation. 

This method is a hybrid of ideas that Stillinger and 
Weber,5g Stillinger,67 and Bixon and Jortner” used to cal- 
culate partition functions. We begin, like Stillinger, by ex- 
pressing the total partition function as a double sum over 
two kinds of microstates; an inner sum over the vibrational 
states associated with a particular minimum and an outer 
sum over all the relevant stable minima. Next, as done by 
Bixon and Jortner, we extract from the outer sum the term 
representing the vibrational states associated with the 
ground state configuration. The resultant partition func- 
tion becomes a sum of two terms: The first term corre- 
sponds to the phase space of the ground state configuration 
and the second term corresponds to the remaining phase 
space of the excited configurations. Itl practice, because the 
distribution of excited minima is essentially continuous we 
will take the sum over the excited configurations as an 
integral. Putting these two steps together, we obtain the 
partition function which, at this stage is as exact for atomic 
vibrations as the continuum approximation allows: 

Z,(P) = e-p’gzvib(P9#g,> 
40) 

+ 
I 

4, e-“Zvib(P,$)G(4) 
I d4, (3) 

br 

where & is the energy of the ground state, 4 is the 
quenched energy of the excited state, u( 4) is the symmetry 
number of a minimum with energy 4, Zvib(fl,$) is the 
vibrational partition function of any minimum with energy 

4 (we assume there are no exact degeneracies of geomet- 
rically inequivalent configurations), 4, is the energy of the 
least stable configuration, and 4, is the energy of the lowest 
excited state. From the symmetry point group of the 
ground state we find a( 4s) =24 and as an approximation 
we set o(+#O) = 1. There is no 1/[(N/2)!12 term in front 
of the integral because as we already stated G( 4) accounts 
for only the number of geometrically nonequivalent inher- 
ent structures. 

With this expression for the partition function we can 
write down the normalized probability, P(Q), that 
(KCI),, will be found vibrating around an equilibrium 
configuration with equilibrium energy 4, for a given tem- 
perature T, 

P(W) = e-B%i~M#>G($) 
Z,(P) * (4) 

P($,T) is defined here the same as it was above, but for 
notational consistency we now write P($,fi) instead of 
P( 4, T) . If we knew P( +,p) then we could use Eq. (4) to 
solve for G(4) 

(5) 

Before we can evaluate G($) we need to calculate 
P(@), Z,(p), and Zvib(p,$). Z,(p) is just a number that 
acts as a normalization constant for P(@) and it will be 
left as a free parameter. 

To calculate P( @) we used a sampling method some- 
what like one introduced recently by Labastie and Whetten 
for Monte Carlo simulations.68 We performed several con- 
stant temperature simulations at the same value of 0, call it 
fl’. The simulation can be done either by Monte Carlo or 
MD procedure; for this study we used MD. During each 
constant temperature trajectory we regularly quenched the 
cluster to determine the inherent minima within which the 
cluster was vibrating. This process was repeated for several 
trajectories at p’ until about 1000 quenched energies were 
accumulated. Several short trajectories (i.e., trajectories 
based on different initial conditions) were used instead of 
one long one in order to minimize any peculiar effects the 
initial conditions might have on the results. The accumu- 
lated quenched energies were binned and smoothed to ob- 
tain a numerical representation of the unnormalized 
P(W). 

To be of most practical use we should have an analyt- 
ical representation for P( $,p’ ) . To construct this, we fit the 
numeric data to a continuous function using a nonlinear 
least-squares fit. The least-squares fit of P(q@'> is inte- 
grated and then normalized. This process worked well; the 
numeric and analytic representations for P(@') are 
shown in Fig. 8. We chose to evaluate P(t@') at T=805 
K because it was high enough above the melting tempera- 
ture to provide a wide distribution of 4 values but not too 
high to obscure any interesting details. The analytic repre- 
sentation we chose for P( $,pl) was a sum of two Gaussians 
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FIG. 8. Probability distribution function P(@‘), p’= (k,805) -‘; points 
are the numeric data from simulations and the solid line is a nonlinear 
least-squares fit of the numeric data using Eq. (6). I$ represents the 
quenched energy of a stable structure of (KCl),,. The parameters of the 
two-Gaussian fit are listed in Table II. 

P( 4,B’ I= gexp - (+q)2 
24 

A2 l-(+-m2 .I2 
+sexp 1 24 I * 

where 3/e is the anharmonic constant for the excited min- 
ima and V& 4) are the normal mode vibrational frequencies 
for minima with energy 4. The constant 3/e is determined 
essentially the same way as ys, but in this case we use 
numerical data from simulations of liquidlike (KCI) s2, i.e., 
from the points of the caloric curve above the melting 
range: Only one ye was used for all the excited minima. 
However, if a more accurate description is desired then 3/e 
could be expressed as a function of 4, yJ 4). Since it is not 
possible for us to evaluate the frequencies ~~(4) for each 
individual excited minimum we need some approximate 
expression that accounts for the softening of the phonon 
spectrum as 4 increases. We follow an approach similar to 
that of Stillinger and Weber56 and express Zvib(P,#) as a _A 
product of Zvib(P,#g)and a $-dependent function 
3N-6 3N-6 

n [hvj($)p] -l =exp[q($) 1 ,pI [hvi(hJP1 -la 
j=l 

(9) 

Solving for q(4) and approximating it by a cubic polyno- 

3N-6 3N-6 

= C In Vj ($g)- C lnvi(4). (10) 
j=l j=l 

7 
The coefficients of the polynomial can be found by plotting 
the right side of Eq. (lo), for many different minima, 
against (p. The simulation data needed to do this can be 
obtained from the same simulations performed to find 
P(qb,fi’). See Table II for the values of the polynomial 
coefficients. 

mial we get 

See Table II for the values of the Gaussian parameters. 
Next we need to calculate Zvib(P,~g) and ZVib(P14). 

For Zvib(fip4g) we use a classical 3N-6 harmonic oscilla- 
tor vibrational partition function multiplied by a tempera- 
ture dependent exponential function that accounts for an- 
harmonic effects 

Zvib(P,$g) =exP - 

( 1 

!  ‘k” [hVj(#g,)Pl-‘* 

j=l 
(7) 

Yj( 9,) are the normal mode frequencies of the ground state 
and y, is the anharmonic constant for the ground state; y, 
was determined by fitting the theoretical caloric curve de- 
rived from Zvib(P,~~) to numerical data from simulation, 
i.e., the points of the caloric curve below the onset of melt- 
ing. For the vibrational partition functions associated with 
excited minima, we do basically the same thing except that 
we use a different anharmonic constant 

Zvib(p,$) =eXp F ‘El6 lIhvj($)PI -It 
i ) 

TABLE II. Values of the parameters used to calculate G(4) in Eq. (13). 

Al 
m, 
01 
A2 
m2 
a2 

0.9712 yg 1.875 x IO5 ion/eV 
0.0629 eV/ion ‘ye 2.7 x lo4 ion/eV 
9.0853 x 10m3 eV/ion a -1.12 739 
0.0288 b 364.986 ion/eV 
0.0362 eV/ion c  -715.631 ion/eV2 
4.4535 x lo-’ eV/ion d 9456.92 ion/eV’ 

We now rewrite Eq. (3) by replacing G(4) with Eq. 
(5) evaluated at fl=p’ 

e-P’gZvib(P,$g) 
mm= 24 

I 4” e-B~z”ib(P,~>P(d,P’)zr(P’) 
+ e+“Z,ib(pl94) d4 41 

(11) 
This equation for Z,(p) is used in the canonical ensemble 
equation 

E=k 
B 

T2 a ln [G(P) I 
afl 

(12) 

to provide an expression, parametrized by Z,(fi’) and yeye, 
for the constant temperature caloric curve that we can 
compare to simulation data. [At this point 3/e and Z,(p’) 
are still unknown.] The integral in the expression for Z,(p) 
can easily be done numerically with the error function. 
Over the important range of values of p the integral is 
robust to changes in the integration limits. That is, the 
lower limit could be made much smaller and the upper 
limit much higher without noticeable changes in the value 
of the integral. This means the approximate values of I#[ 
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and 4, obtained from simulation results did not introduce 
any significant error. This is true because at the important 
values of fi, not too high and not too low, the high-lying 
and low-lying minima are visited very infrequently by the 
cluster and so P($,fi) is negligible at these extreme values 
of 4. 

It was a simple task to find the values of Z,(p’> and ye 
because their effects are independent of each other, adjust- 
ing the value one parameter did not alter the effects of the 
other parameter. The magnitude of ?/e was determined by 

matching the liquidlike portion of the model curve with the 
simulation caloric curve. Z,(p) is just a normalization 
constant which fixes the melting temperature and was ad- 
justed to match the melting region of the model caloric 
curve with the simulation data. The simulation and model 
caloric curves are shown in Fig. 9. The goodness of fit tells 
us that the analytic representation for P( @’ ) is quantita- 
tively fairly accurate. 

The final step to obtain G(4) is to express Eq. (5) in 
terms of all the known quantities 

G(m)_oexP[ -(:;;r)2]+&exP[*]]z,caY 
- 

exP( -P’+) exp $ 
i 1 

exp[q(#)]&(p’,&) 
(13) 

The natural log of G(4) and its derivative with respect to 
4 are shown in Fig. 10. There are a few important points 
concerning the two curves in Fig. 10 that should be dis- 
cussed. First, the calculated ln[G($)] is negative for very 
low values of 4 which is of course unphysical. This error 
can be due to the values of Z,(p’),r,, or from the fitting 
function q($), but it is most likely a result of fitting the 
numeric data of P(@‘> at very low values of 4 to a sum 
of two Gaussians. This error is not significant because the 
values of $ for which G(#) is negative are unimportant 
thermodynamically. Furthermore, the approximation that 
G(4) is continuous probably fails for these extreme low 
values of 4. 

Labastie and Whetten have employed a similar 
method to compute the total density of states, in contrast 
to the density of configurational states calculated here. 
Their method was similar in that they also computed a 
function P( #,p), but in their case 4 represented the instan- 
taneous configurational energy of the cluster. Their recipe 
was to use Monte Carlo simulations to compute P( qS,fi) for 
several different nearby values of P. This allowed the ratio 
of the partition functions for the different values of the 0, 
and ultimately the density of total-energy states, to be com- 
puted. If necessary this method could be applied here as 
well. In the future this should be done in order to compare 
the two methods. If the agreement between the results of 
the two methods is good then the two methods would mu- 
tually validate each other. 

It has been postulated that the total number of non- 
equivalent equilibrium structures of a cluster, Q, increases 
exponentially with the number of particles N 

an,= 
I 

” G(cj)dq5=eaN (14) 
41 

where the exponential constant is of order unity.51’69 The 
value of a depends on the type of cluster but for large 
clusters it should be independent of size. If we use a max- 
imum term approximation for R, i.e., $= G($,), then 

I 

using this data for (KC1)s2 we find that for KC1 clusters 
a~O.66. If we assume that KC1 clusters in general have a 
G( 4) qualitatively similar to the one for (KCl) 32 then we 
can obtain G(4) for other KC1 clusters simply by using 
our calculated value of a to calculated ti, and then use 0, 
to renormalize G(4) to the correct magnitude for the new 
cluster size. Obviously, this is only true for large KC1 clus- 
ters for which a continuous form can be used for G( 4). 

From the derivative of ln[G(+)] with respect to $ 
shown in Fig. 10(b) we see that there is a 4 at which the 
slope becomes negative. This $ indicates the energy at 
which equilibrium structures with evaporated particles or 
just unrealistically noncompact structures begin to domi- 
nate the potential energy surface landscape and thus 
should correspond with the value of 4, chosen on the basis 
of simulation results. The fact that the two do agree dis- 
plays a kind of self-consistency that is indirect demonstra- 
tion of the validity of this approach. 

1200 I-= 
975 - 

T (K) 750 - 

525 - 

-3.21 

I 
-3.12 -3.04 -2.95 

E (ey/ion) 

FIG. 9. Constant temperature caloric curve for ( KCl),,; points are sim- 
ulation data and the solid line is the theoretical fit using Eq. (11) in 
Eq. (12). 
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FIG. 10. Density of configurational states: (a) 1Og of configurational density of states ln[G(+)] (b) 4-d erivative of the function shown in (a). # 
represents the quenched energy of a stable structure of ( KCl) 32 

IV. INTERPRETATIONS AND CONCLUDING REMARKS ergy forms that is observable on the time scale of MD 

From constant energy simulations we found that simulations, for a measurable range of energies.“” 

(KCl) 32 exhibits a solidlike low temperature phase and a The liquidlike phase of ( KCl) 32, the second KC1 magic 
liquidlike high temperature phase. (KCl) 32 transforms be- number cluster, is more fluid than the stiff liquidlike state 
tween these two phases in a very small energy interval. of (KCl) 4, the first KC1 magic number cluster. The liquid- 
That is, once the energy of (KCl),, is high enough, the like state of (KCl), is characterized by highly collective 
cluster passes out of its microcrystal solidlike state and interwell motions with particle interchanges occurring 
rarely finds its way back to it or any of the other low-lying, -through a multistep process. The interwell motions of 
crystalline minima, and if it does, its stay is only transitory. ( KCl) 32 are less collective and are more facile as evidenced 
This conclusion is supported by the fact that we found no by its large diffusion constant; this is also apparent in an- 
evidence of a dynamic coexistence, at least on the nsec time imations of the MD on the computer. In these respects the 
scale of our MD simulations, between solid and liquid liquidlike phase of ( KCl) 32 is more like the bulk liquid 
(KCl),,. This is a salient distinction with the small KC1 phase than the liquidlike state of small KC1 clusters. 
clusters, which exhibit a dynamic coexistence between low- Hence, it is without question perfectly appropriate to speak 
potential energy (global minimum) and high-potential en- about the “phases” of (KCl),, in the sense that we do for 
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bulk systems. (KCl) 32 is a prime example of how a micro- 
scopic system can exhibit distinct phases that are unam- 
biguously identifiable with bulk phases. 

We found that (KCl),, has quenched structures that 
are a combination of regular, ordered, and irregular, dis- 
ordered parts. Dynamically we associate the regular part 
with the solidlike state and the disordered part with the 
liquidlike state, or with its frozen-out counterpart. Thus, 
these structures define a type of simultaneous phase coex- 
istence that we term nonwetting, the solid is “not wetted” 
by the liquid. Applying the term “phase coexistence” to 
these nonwetted structures is loose use of terms since we 
have not rigorously demonstrated that the nonwetted 
structures define a physically distinct, stable phase of 
(KC1)3,. That is, we did not resolve the nonwetted behav- 
ior from the general liquidlike behavior of (KC1)3, in any 
physically attainable way, only by unrealistic mathematical 
quenching procedures. We nevertheless employ this term 
to permit comparisons with the behavior of the surface 
melted state of some rare gas clusters, where the melted 
surface layer “wets” the solid inner core. This melted sur- 
face state is a stable antecedent phase of the homoge- 
neously melted cluster.33 At high temperatures the stability 
of nonwetted (KCl)32 structures gives way to completely 
disordered, amorphous structures. These structures are un- 
usual in their conspicuous lack of order. We use this 
present mention of amorphous (KCl),, to pose the ques- 
tion concerning the possible existence of a microamor- 
phous phase that is the small-system analog of the bulk 
glass phase. We have investigated this question using 
(KCl)33 as the model system and the results are in the 
following paper.” 
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We outlined a method by which one can calculate the 
static configurational density of states G(4). This same 
method also allows one to calculate the total canonical 
partition function from which the free energy is calculable. 
The quantitative accuracy of the method was shown by 
comparing a constant temperature MD caloric curve with 
the one derived from our model partition function. 

Stillinger6’ proposed a simple form for G($) based on 
a combinatorics approach to a system of dilute noninter- 
acting vacancy defects 

‘34) =exp[d ln 4+W+)l, (15) 
where E,, is the enthalpy of creating a defect and I$ is the 
energy difference between the packing energy of the 
ground state and the defected minimum. Stilliger com- 
ments in relation to this expression for G(4) that “inclu- 
sion of other types of point defects, and of a finite number 
of defect configurations at any location within the crystal- 
line matrix would not alter the basic functional form of Eq. 
( 15).” With appropriate choices for E,, and 4 the func- 
tional form shown in Eq. (15) fits well the G(4) that we 
calculated for ( KCl) 3z. This implies that the qualitative 
form of G( 4) that we calculated for (KCl) 32 is probably 
generally applicable to large clusters and possibly to bulk 
systems. In other words, maybe there is a sort of law of 
corresponding states for G( 4). However, one major differ- 
ence between Eq. ( 15) and the density of configurational 
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FIG. 11. Fraction of (KCl),, clusters, P(qS,p), occupying a basin with 
minimum energy q5 for a given temperature. In each curve the left axis 
corresponds to P(&,P) and the solid circle on the left axis marks the 
P(&,,P) value. The right axis corresponds to the distribution of P(Q,p) 
values for excited state configurations: (a) T=737.5 K, (b) T=751 K, 
(c) T=765 K, and (d) T=SoO K. 
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states of (KCl),, that we calculated is the slope of G( 4) as 
4 approaches zero. The slope of Eq. ( 15) diverges as 4 
approaches zero whereas the slope of the G(4) that we 
calculated stays finite [Fig. 10(b)]. If our evaluation of 
G(4) is at least qualitatively correct insofar as the slope 
approaches a finite limiting value as 4 approaches zero, 
then this is a major distinction between large clusters and 
bulk-a diverging slope of G(4) may be found only for 
bulk systems. The limit of this slope, as the size of the 
system increases, can be used to monitor the approach 
from small system behavior to bulk behavior. 

In Sec. III we discussed the phase behavior of ( KCl) 32 
as investigated by constant energy MD simulations. Here 
we use our model partition function to analyze the phase 
behavior of (KCl) 32. The partition function we formulated 
for (KCl),, allows us to compute the fraction or probabil- 
ity, P( @), of (KCl) 32 clusters occupying a potential sur- 
face basin with minimum energy 4 at a given p, 

W,rP) 0.60 - 

b.40 - 

0.20 - 

0.00 
600 650 700 750 800 850 

-I- (K) 

FIG. 12. P(&,,P) as a function of temperature. 

Z,(P) 
P(dm = zt(B) * (16) 

Z,(p) is the contribution to the total partition function 
Z,(p) [Eq. ( 1 1 )] from basins with energies of minima in 
the range #A&$, 

e-p’gzvibCP,$g) z&Q= 24 1 (174 
4=4g 

and 

Z,(P) = e-8~Z~,(P,~)p(~,~)Z,(P’) 
e-P’%ibW#> 

dtj . (17b) 
&-4g 

In Fig. 11 we show the plots of Eq. (16) for several tem- 
peratures. 

At low temperatures (not shown) P(&,p) = 1, where 
4, is the value of 4 for the global minimum, rocksalt basin. 
As the temperature is increased to the lower end of the 
transition region [Fig. 11 (a)] P(&,fl) decreases below 
unity and a significant distribution of P(@) develops for 
the excited-state basins (9 > 4s). Thus for this temperature 
P($,p) can be decomposed into two main parts; a delta- 
function distribution at 4s ( ~0.75) and a second distribu- 
tion ( ~0.25) over all the higher values of 4. It is signifi- 
cant that the distribution of P( @) values over the excited- 
state basins has a peak shape and is not monotonically 
decreasing with 4. Upon further increase of T, P(&$) 
decreases until it is equal to the area under the distribution 
of P(@) for the excited-state basins [Fig. 11 (b)]. This 
temperature defines the melting point of (KCl) 3P As T is 
increased above the melting temperature, P($,p) de- 
creases rapidly and, equally as fast, the area under the 
distribution of P(t$,f?) over the excited-state basins ap- 
proaches unity. Eventually P( &#) approaches a negligible 
value and P(&?) is significant only for the upper values 
of 4. 

fraction P( 4&?) with the fraction of solidlike clusters in an 
ensemble of (KCl)s, clusters. Likewise, for all tempera- 
tures within and above the transition region we identify the 
high-4 distribution of P($,p) with the liquidlike state of 
(KCl),,. Although at first glance these findings appear so, 
they are in fact not contradictory to the simulation results 
in which we found no evidence for a sustained dynamic 
coexistence of solidlike and liquidlike forms of (KCl)s,. 
The statistical approach used here overcomes the time 
scale limitations and dynamical effects associated with MD 
simulations that prohibit observation of the solidlike/ 
liquidlike dynamic phase coexistence. More importantly 
these findings suggest that the inability to observe, in MD 
simulations, a dynamic coexistence between solidlike and 
liquidlike forms of (KCl) a2 is most likely due to very long 
passage times between the two phases. This specific finding 
will be discussed in more detail elsewhere. Finally, this is 
yet another example of the interplay of dynamics and ther- 
modynamics in clusters.71 

Note, that the distribution of P( I@) over the excited- 
state basins actually has two peaks and that we might con- 
sider the total P(@) distribution to have three significant 
parts. The appearance of two high-$ peaks could be an 
artifact of fitting the numerical representation of P( @‘) to 
a sum of two Gaussians. However, we ignore the existence 
of the second minor peak since this does not alter our basic 
conclusions. These calculations can be repeated using the 
Labastie and Whetten6’ histogram method to verify if the 
splitting of the high-4 distribution of P(@) is real or just 
an artifact of this specific method. 

Based on the MD simulations results we interpret each 
part of P( @) (b=& and 4 > 4,) as representing a phys- 
ically distinct form of (KCl) 3z. Specifically, we identify the 

We computed P(@?) as a function of temperature to 
show how rapidly it decreases from unity down to zero and 
the result is shown in Fig. 12. The S-shape region of this 
curve defines the range of temperatures within which an 
ensemble of (KCl),, clusters consists of significant frac- 
tions of both solidlike and liquidlike clusters. Hence, we 
conclude that for a range of temperatures (KCl),, has two 
stable forms; a solidlike form identified with 4s (Ref. 72) 
and a liquidlike form identified with a temperature- 
dependent distribution of excited-state basins. The main 
significance of this result is that it directly relates the sol- 
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idlike and liquidlike forms of a cluster with specific basins 
of the potential energy surface-a dominant theme in our 
studies of the phase behavior of clusters. Lastly, since we 
arrived at this conclusion from a statistical approach it 
stands up to criticisms concerning possible nonequilibrium 
effects associated with MD simulations. 
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