Tutorial VIII

- 1. Formulate the Hamiltonian and obtain the Hamilton's equations of motion for the following systems:
 - (a) Two point masses m_1 and m_2 are connected by a light inextensible string of length l and slides on the surface of prism with angles α and β (see figure on right). Gravity acts vertically downward as shown.
 - (b) The two body central force with V = -K/r. Using the Poisson bracket formalism show that the p_{θ} is a constant of motion.
 - (c) Two dimensional motion of a projectile under gravity. Treat in both (a) Cartesian and (b) plane polar coordinates. For case (a) show that p_x is conserved using the Poisson bracket.
 - (d) An isotropic harmonic oscillator in two dimensions, i.e., having equal force constants, $k = m\omega^2$. Show that $A = \frac{1}{2m}(p_x p_y + m^2\omega^2 xy)$ is a constant of motion.
 - (e) For a point mass m confined to move on the surface of a sphere of radius R under gravity. Identify the constants of motion, with supporting proof using Poisson bracket formalism.

