Tutorial III

Classical Mechanics

Course: PH211 + PH403

- Determine (i) the constraint relations and (ii) the degrees of freedom; then (iii) device a set of generalized coordinates, (iv) set up the Lagrangian, and obtain (v) the Lagrange's equations of motion for the following systems:
 - (a) double pendulum (treat it as 2-D problem)
 - (b) spherical pendulum
 - (c) A mass m moves on a parabolic wire $y = c x^2$ under gravity. c is a constant (2-D problem).
- 2. Two masses m_1 and m_2 connected by a light inextensible string of length l. Mass m_1 moves on a horizontal surface, while mass m_2 moves vertically down under gravity as shown in the figure. Set up the Lagrangian of the system and obtain the Euler-Lagrange equations of motion.

- 3. Show that if $\mathcal{L}(q, \dot{q}, t)$ is a Lagrangian of a system, $\mathcal{L}'(q, \dot{q}, t) = \mathcal{L}(q, \dot{q}, t) + \frac{dF}{dt}$ is also a valid Lagrangian of the system where F = F(q, t) is a differentiable otherwise arbitrary function.
- 4. A small block of mass m slides down a wedge of angle θ as shown in the figure. The whole motion is in the X-Y plane. Obtain the Lagrange's equations of motion for the following cases:
 - (a) the wedge is stationary.
 - (b) the wedge (of mass M) is moving on a horizontal surface due to the reaction of the moving mass m.

