
PH101

Lecture 7

More examples on Lagrange’s equation;

generalized momentum, 

Cyclic coordinates

Conservation of Momentum.     



II. Write down the total kinetic energy T and potential energy V of the whole 

system in terms of the  Cartesian coordinates, to begin with!
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III. Obtain appropriate transformation equations  

(Cartesian -→ generalized coordinates) using constraint relations:

Let’s recall: The recipe of Lagrangian!
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V. Now Apply E-L equations: 

I. (a) Recognize, & obtain the constraint relations, (b) determine the 

DOF, and (c) choose appropriate generalized coordinates!

IV. Convert T and V from Cartesian to suitable generalized -coordinates ( !)
and generalized velocities ( 
 !) to write L as,



Lagrange’s equations (constraint-free motion)

Before going further let’s see the Lagrange’s equations 

recover Newton’s 2nd Law, if there are NO constraints! 

Let a particle of mass, �, in 3-D motion under a potential, �(	, 
, �)
If No constraints, then its, DOF=3; Generalized coordinates: (	, 
, �)
Now, 
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Corresponding E-L equations are, 
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Lagrange’s equation: Example 3
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:

A block of mass � is sliding on a wedge  of mass 9. Wedge can slide on the 

horizontal table. Find the equation of motion. 

Initial conditions!

At time t=0: the wedge is stationary and at a distance ; from the origin, 

and the mass � is gently placed at the top point of the Wedge!

<



Lagrange’s equation: Example 3

Step-1: Find the degrees of freedom and choose suitable generalized coordinates 

One particle = = 2,  >?. ?@ A?>B�CDE>B F = 4; 
So DOF= 3 O 2 − 4 = 2.

The distance of the wedge from origin (	P ) and distance slipped by 

the block (�) can serve as generalized coordinates of the system.

Only translation of the given rigid bodies are considered, thus for the 

calculation of degrees of freedom both of them are considered as point 

particles. 
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Four constrains: �P = 0; 
P = 0;  �R= 0;  
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R = < − � sin :



Lagrange’s equation: Example 3

Step-2: Find out transformation relations

	R = 	P + � cos :;           
R= < − � sin :
	
R = 	
P + �
 cos :;           

R = −�
 sin :

Step-3: Write � D>^ _ in Cartesian
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Step-4: Convert � D>^ � E> `e>eCD;E�e^ A??C^E>D�e 
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Step-5: Write down  Lagrangian 

/ = � − �
/ = 1

2 � 	
P� + �
 � + 2	
P�
 cos : + 1
2 9	
P� − �`(< − � sin :)

Step-5: Write down Lagrange’s equation for each generalized coordinates  
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Lagrange’s equation: Example 3

----(1)

----(2)

----(3)



From the Initial conditions given: 	9 = ;;  	
 9 = 0; q = 0; �
 = 0
Initial  Px = 0; So it any other time later! 

An Interesting point: Example 3

��
�0
 k = l0
 k + l 
 mno p + k0
 k= constant!

But what’s this quantity? The total linear momentum, say q0!

So Lagrange’s equation tells us that the total linear momentum 

is conserved! We didn’t have to impose it to solve!

0
 k = Tl 
 mno p
(krl) => 	j 9= 

Tl j mno p
(krl)

(from eq (1))

 j + 0j k mno p = s otu pThis shall be substituted in eq (3):

And, Solve the problem completely!  

(It’s left to you to verify with the Newtonian Scheme!)

In some cases further time derivative (such as equation (2)) may not be unnecessary!



Generalized momentum: A few points 

Generalized momentum is not the mass multiplied by generalized 

velocity.

Generalized velocity is the rate of charge of generalized coordinate �
v = 7wx
78
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In specific cases, this 

relation may be true but 

it is not the general case. 
Definition of generalized momentum

Unit/dimension of the generalized momentum depends on generalized coordinate 

under consideration. 

Generalized definition of momentum allows to consider non-mechanical systems, for example 

EM field. Example: charged particle in EM field 1y = �zy + e{y



Generalized momentum 

Lagrangian of a free particle
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Lagrangian of a freely rotating wheel with moment of inertia � is
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 �

And    
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 →Angular momentum

In both the examples, momentum was the derivative of the Lagrangian with respect to 

generalized velocity. 

Generalized momentum associated with generalized coordinate �v  by 

1v = i/
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Also known as conjugate momentum 

or canonical momentum



Cyclic coordinates 

Example 1: Lagrangian of a point mass under gravity,
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Since neither 	 nor 
 appear in the Lagrangian, they are cyclic. 

Hence q0 & q� will be conserved!

Example 2: Lagrangian for a planet of mass � orbiting around the 

sum (mass M): 

                / = �
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Since � does not appear in the Lagrangian, it is cyclic coordinate. 

Hence �
�

=
��
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 !
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  (≡ Ang. Momentum! -will be conserved!)

If a particular coordinate does not appear in the Lagrangian, it is 

called ‘Cyclic’ or ‘Ignorable’ coordinate. 
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Cyclic coordinates and conservation of 

conjugate momentum 

• If there is no explicit dependence of L on generalized 

coordinate �v, then 

i/
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= 0
Thus Lagrange’s equation corresponding to cyclic 

coordinate become,
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Hence, �! =constant

Generalized momentum conjugate to a cyclic coordinate is a constant



Lagrange’s equation: Example 4

A bead is free to slide along a frictionless hoop of radius R. The hoop rotates with 

constant angular speed � around a vertical diameter. Find the equation of motion for 

the position of the bead.
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Lagrange’s equation: Example 4
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One holonomic constraint relation 

	� + 
� + �� = ��
Another holonomic constraint �
 = �, E, e. � = ��
(Or in Cartesian this constrain is tanT� U

3 = ��)

Step-1: Find the degrees of freedom and choose 

suitable generalized coordinates 

One particle = = 1,  >?. ?@ A?>B�CDE>B F = 2
�<fB ^e`CeeB ?@ @Cee^?� = 3 O 1 − 2 = 1

Hence number of generalized coordinates must be one.

Choice of Generalized coordinate: ‘�’ , which the angle of particle 

with rotation axis (z-axis) of hoop.
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Lagrange’s equation: Example 4

Step-2: Find out transformation relations

	 = � sin � cos �� ;
 = � sin � sin �� ; � = � cos �

Step-3: Write � D>^ � in Cartesian
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Step-4:Convert � D>^ � �? `e>eCD;E�e^ A??C^E>D�e , eE�<eC fBE>`, 
(a)transformation at Step#2 Or, 

(b) in this case employing spherical polar equations.

� = �
� �[���
 � + ����BE>��]; 

V= �`� cos �

	
 = � cos � cos �� �
 − � �sin � sin ��


 = � cos � sin ��  �
 + �� sin � cos ��

�
 = −� sin � �




Example 4: continue

Step-5: Write down  Lagrangian 

/ = � − �
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Step-5: Lagrange’s equation
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Example-5

A mass 9 slides down a frictionless plane inclined at angle :. A pendulum,

with length ;, and mass �, is attached to 9. Find the equations of motion.
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Questions?


