PH101: PHYSICS1

Lecture 5

Constrains, Degree's of freedom and generalized coordinates

Constrains

Motion of particle not always remains free but often is subjected to given conditions.

A particle is bound to move along the circumference of an ellipse in XZ plane.

At all position of the particle, it is bound to obey the condition $\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$

Constrains: Condition or restrictions imposed on motion of particle/particles

Classification of constrains

□ Holonomic Constrains: Expressible in terms of equation involving coordinates and time (may or may not present),

I,e. $f(q_1, ..., q_n, t) = 0$; where q_i are the instantaneous coordinates

□ Non-holonomic constrains : Constrains which are not holonomic

Two types of constrains are there in this category

(i) Equations involving velocities: $f(q_1, ..., \dot{q}_1, ..., \dot{q}_n, t) = 0$, (& those cannot be **reduced** to the holonomic form!).

(ii) Constraints as *in-equalities*, An example, $f(q_1, ..., q_n, t) < 0$

In both type of constrains (holonomic/non-holonomic) time may or may not be present explicitly.

Pendulum

Independent coordinates: If you fix all but one coordinate and still have a continuous range of movement in the free coordinate.

If you fix y_1 , leaving x_1 free, then there is no continuous range of x_1 possible. In fact in this case there will not be any motion if you fix y_1

Degree of Freedom & Generalized coordinate

If you choose θ as the only coordinate, it can represent entire motion of the bob in XY plane

In this problem, only one coordinate θ is sufficient which is sole independent coordinate.

Y

Degree of Freedom (DOF): no of independent coordinate required to represent the entire motion = $3 \times (no \ of \ particles) - no. \ of \ constrains = 3-2=1$

In this case no. of particle=1 No. of constrains =2 $[x^2 + y^2 = l^2 \text{ and } z = 0]$

DOF =1; Generalized Coordinate= θ

Degree's of freedom

Degree's of freedom (DOF): No. of independent coordinates required to completely specify the dynamics of particles/system of particles is known as degree's of freedom.

Degree's of freedom =
 3 × (no. of particles) - (No. of holonomic constrains)

$$= 3N - k$$

Where N = No. of particles k = No. of constrains.

Holonomic constrains

Pendulum of varying length!

The length of the string is changing with time l(t) and **is known**.

General form of these constrain equations $f(q_1, ..., q_n, t) = 0$

Pendulum with stretchable string, the bob is constrain to move in a plane

Constrain equations $x^{2} + y^{2} = l^{2}(t)$ z = 0

DOF =1; GC =
$$\theta$$

Non-holonomic constraint

Gas molecules confined within a spherical container of radius *R*

Constrain condition $r_i \leq R$

Inequality!

Rolling Constraint

x - $R\theta = x_0$ (constraint relation)

DOF =1; GC = θ

Other *Constrains*: $y = 0; z = R; \phi = 0; \psi = 0;$

More complicated constraint

$$\dot{x} = v \sin \theta = R\dot{\phi} \sin \theta$$
$$\dot{y} = -v \cos \theta = -R\dot{\phi} \cos \theta$$

Velocity dependence that can't be integrated out! Non-holonomic!

Double pendulum

□ To describe the motion double pendulum in XY plane, one needs four coordinates (x_1, y_1, x_2, y_2) in Cartesian coordinate system.

The Cartesian coordinates are not independent, they are related by constrain equations

$$x_1^2 + y_1^2 = l_1^2$$
$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2$$

If you fix y_1, x_2, y_2 leaving x_1 free, then there is no continuous range of x_1 possible. In fact in this case there will not be any motion by fixing three coordinates leaving one as free.

Generalizer coordinates

□ If you choose θ_1 and θ_2 as the coordinates, then they can adequately describe the motion of double pendulum at any instant. (they are complete)

No. of constrains = 4

$$z_1 = 0; z_2 = 0;$$

 $x_1^2 + y_1^2 = l_1^2;$
 $(x_2 - x_1)^2 + (y_2 - y_1)^2 = l_2^2$

DOF: No. of independent coordinates required to completely specify the motion $=3 \times (no. of particles) - (No. of constrains)$ $= 3 \times 2 - 4 = 2$

Generalizer coordinates: θ_1 and θ_2

Generalized coordinate?

Generalized coordinate

- non necessarily a distance
- > Not necessarily an angle.
- Not necessarily belong to a particular coordinate system! (Cartesian, Cylindrical, Polar or Spherical polar)

Let's check an example to clarify the above mentioned points

θ

(x, θ) are the independent generalized coordinates.
 (Check the independence)

□Generalized coordinates $x \rightarrow$ distance $\theta \rightarrow$ Angle Not belong to any specific coordinates system (mixed up)

Generalized coordinates properties

 $\Box q_j \rightarrow$ To be generalized coordinates

They must be

- Must be independent
- Must be complete
- System must be holonomic

□ Meaning of Complete: Capable to describe the system configuration at times. In other word, capable of locating all parts at all times.

Generalized coordinates
 Not necessarily Cartesian
 Not necessarily any specific coordinate system

Generalized coordinates of rigid body

Rigid body has six degrees of freedom Thus **six generalized coordinates** are necessary to specify the dynamics of rigid body

3 translational DOF for the center of Mass + 3 rotational degree of freedom about the center of mass = 6 generalized coordinates

In case of only translation (motion of CM), a rigid body can be accounted as point particle during estimating the number degree of freedom

□ Degree's of freedom =No. of independent coordinates required to completely specify particles configuration at all times (generalized coordinates) =3N - k
 Where N→ no. of particles
 k → no. of holonomic, constrains

□ Choice of generalized coordinates is not unique but no. must be equal to degree's of freedom.

Question please