PH101: PHYSICS1

Lecture 5

Constrains, Degree's of freedom and generalized coordinates

Constrains

Motion of particle not always remains free but often is subjected to given conditions.

A particle is bound to move along the circumference of an ellipse in XZ plane.

At all position of the particle, it is bound to obey the condition $\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$

Constrains: Condition or restrictions imposed on motion of particle/particles

Classification of constrains

\square Holonomic Constrains: Expressible in terms of equation involving coordinates and time (may or may not present),

I,e. $\boldsymbol{f}\left(\boldsymbol{q}_{1}, \ldots . \boldsymbol{q}_{\boldsymbol{n}}, \boldsymbol{t}\right)=\mathbf{0}$; where q_{i} are the instantaneous coordinates
\square Non-holonomic constrains : Constrains which are not holonomic

Two types of constrains are there in this category
(i) Equations involving velocities: $\boldsymbol{f}\left(\boldsymbol{q}_{1}, \ldots, \dot{\boldsymbol{q}}_{1}, \ldots ., \dot{\boldsymbol{q}}_{n}, \boldsymbol{t}\right)=\mathbf{0}$, (\& those cannot be reduced to the holonomic form!).
(ii) Constraints as in-equalities, An example, $\boldsymbol{f}\left(\boldsymbol{q}_{1}, \ldots ., \boldsymbol{q}_{\boldsymbol{n}}, \boldsymbol{t}\right)<\mathbf{0}$

In both type of constrains (holonomic/non-holonomic) time may or may not be present explicitly.

Pendulum

\square Constrain equations

$$
\begin{aligned}
& x^{2}+y^{2}=l^{2} \\
& x=\sqrt{l^{2}-y^{2}}
\end{aligned}
$$

\square One can not change x independently, any change in x will automatically change y.

Independent coordinates: If you fix all but one coordinate and still have a continuous range of movement in the free coordinate.

If you fix y_{1}, leaving x_{1} free, then there is no continuous range of x_{1} possible. In fact in this case there will not be any motion if you fix y_{1}

Degree of Freedom \&Generalized coordinate

\square If you choose θ as the only coordinate, it can represent entire motion of the bob in XY plane
\square In this problem, only one coordinate θ is sufficient which is sole independent coordinate.

Degree of Freedom (DOF): no of independent coordinate required to represent the entire motion $=3 \times$ (no of particles) no. of constrains $=3-2=1$

In this case no. of particle $=1$
No. of constrains $=2 \quad\left[x^{2}+y^{2}=l^{2}\right.$ and $\left.z=0\right]$
DOF $=1 ;$ Generalized Coordinate $=\theta$

Degree's of freedom

\square Degree's of freedom (DOF): No. of independent coordinates required to completely specify the dynamics of particles/system of particles is known as degree's of freedom.

DDegree's of freedom $=$
$3 \times$ (no.of particles) - (No.of holonomic constrains)

$$
=3 N-k
$$

Where
$N=$ No. of particles
$k=$ No. of constrains.

Holonomic constrains

> Particle moving along a line (say X-axis)

Constrain equations

$$
y=0 ; z=0
$$

DOF $=1$;
$\mathrm{GC}=\mathrm{x}$

A particle is moving along a straight wire, making an angle With x -axis.

Constrain equations

$$
\begin{aligned}
& y= x \tan (\theta) \\
& z=0
\end{aligned}
$$

$$
\mathrm{DOF}=1 ; \mathrm{GC}=x \text { or } y
$$

General form of these constrain equations, $f\left(q_{1}, \ldots, q_{n}\right)=0$
Atwood's machine
Constrain equations

$$
\begin{gathered}
z_{1}+z_{2}+\pi a=l \\
x_{1}=0 ; y_{1}=0 \\
x_{2}=0 ; y_{2}=0
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{DOF}=1 ; \\
& \mathrm{GC}=\mathrm{z}_{1} \text { or } \mathrm{z}_{2}
\end{aligned}
$$

Pendulum of varying length!

Non-holonomic constraint

Gas molecules confined within
a spherical container of radius R

Constrain condition $\boldsymbol{r}_{\boldsymbol{i}} \leq \boldsymbol{R}$

Inequality!

Rolling Constraint

More complicated constraint

Speed,

$$
v=R \dot{\varphi}
$$

$\dot{x}=v \sin \theta=R \dot{\varphi} \sin \theta$
$\dot{y}=-v \cos \theta=-R \dot{\varphi} \cos \theta$
Velocity dependence that can't be integrated out! Non-holonomic!

Double pendulum

The Cartesian coordinates are not independent, they are related by constrain equations

$$
\begin{gathered}
x_{1}{ }^{2}+y_{1}{ }^{2}=l_{1}{ }^{2} \\
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=l_{2}{ }^{2}
\end{gathered}
$$

If you fix y_{1}, x_{2}, y_{2} leaving x_{1} free, then there is no continuous range of x_{1} possible. In fact in this case there will not be any motion by fixing three coordinates leaving one as free.

Generalizer coordinates

\square If you choose θ_{1} and θ_{2} as the coordinates, then they can adequately describe the motion of double pendulum at any instant. (they are complete)

$$
\begin{aligned}
& \text { No. of constrains }=4 \\
& z_{1}=0 ; z_{2}=0 ; \\
& x_{1}{ }^{2}+y_{1}{ }^{2}=l_{1}{ }^{2} ; \\
& \left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=l_{2}{ }^{2}
\end{aligned}
$$

DOF: No. of independent coordinates required to completely specify the motion
$=3 \times$ (no.of particles) - (No.of constrains)
$=3 \times 2-4=2$

Generalizer coordinates: $\boldsymbol{\theta}_{\mathbf{1}}$ and $\boldsymbol{\theta}_{\mathbf{2}}$

Generalized coordinate?

\square Generalized coordinate

$>$ non necessarily a distance
$>$ Not necessarily an angle.
$>$ Not necessarily belong to a particular coordinate system! (Cartesian, Cylindrical, Polar or Spherical polar)

Let's check an example to clarify the above mentioned points

A pendulum is attached with an linearly oscillating particle
$\square(x, \theta)$ are the independent generalized coordinates. (Check the independence)
\square Generalized coordinates
$x \rightarrow$ distance
$\theta \rightarrow$ Angle
Not belong to any specific coordinates system (mixed up)

Generalized coordinates properties

$\square q_{j} \rightarrow$ To be generalized coordinates
They must be
$>$ Must be independent
$>$ Must be complete
$>$ System must be holonomic
\square Meaning of Complete: Capable to describe the system configuration at times. In other word, capable of locating all parts at all times.
\square Generalized coordinates
$>$ Not necessarily Cartesian
$>$ Not necessarily any specific coordinate system

Generalized coordinates of rigid body

\square Rigid body has six degrees of freedom
Thus six generalized coordinates are necessary to specify the dynamics of rigid body

3 translational DOF for the center of Mass +3 rotational degree of freedom about the center of mass $=\mathbf{6}$ generalized coordinates

In case of only translation (motion of CM), a rigid body can be accounted as point particle during estimating the number degree of freedom

Summery

\square Degree's of freedom $=$ No. of independent coordinates required to completely specify particles configuration at all times (generalized coordinates) $=3 N-k$
Where $\mathrm{N} \rightarrow$ no. of particles
$k \rightarrow$ no. of holonomic, constrains
\square Choice of generalized coordinates is not unique but no. must be equal to degree's of freedom.

Question please

